Suppr超能文献

利用嗅觉受体信息进行分子气味预测

Molecular Odor Prediction Using Olfactory Receptor Information.

作者信息

Wakutsu Yuta, Kaneko Hiromasa

机构信息

Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, 214-8571, Kawasaki, Kanagawa, Japan.

出版信息

Mol Inform. 2025 Mar;44(3):e202400274. doi: 10.1002/minf.202400274.

Abstract

In fragrance development, the framework development process is a bottleneck from the perspective of labor, cost, and human resource development. Odors vary greatly depending on the structure and functional groups of the molecule. Although odor has been predicted from only the structure of molecules, its practical application remains elusive. In this study, we developed a model for predicting the odor of molecules that have only small differences in structure. Focusing on the mechanism of human olfaction, we divided the mechanism into three levels and constructed three models: a classification model that predicts the presence or absence of binding between molecules and olfactory receptors, a regression model that predicts the strength of binding, and a classification model that predicts the presence or absence of odor based on the strength of binding. Olfactory receptors were used as descriptors to discriminate between similar molecular odors. Our models predicted odor differences between some similar molecules, including optical isomers.

摘要

在香料开发中,从劳动力、成本和人力资源开发的角度来看,框架开发过程是一个瓶颈。气味会因分子的结构和官能团而有很大差异。尽管仅从分子结构就能预测气味,但其实际应用仍然难以捉摸。在本研究中,我们开发了一种用于预测结构仅有微小差异的分子气味的模型。着眼于人类嗅觉的机制,我们将该机制分为三个层次并构建了三个模型:一个预测分子与嗅觉受体之间结合与否的分类模型、一个预测结合强度的回归模型,以及一个基于结合强度预测气味有无的分类模型。嗅觉受体被用作描述符来区分相似分子的气味。我们的模型预测了一些相似分子(包括旋光异构体)之间的气味差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0b9/11906144/93e14b68dbf2/MINF-44-e202400274-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验