Fajgenblat Maxime, Wijns Robby, De Knijf Geert, Stoks Robby, Lemmens Pieter, Herremans Marc, Vanormelingen Pieter, Neyens Thomas, De Meester Luc
Laboratory of Freshwater Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium.
Data Science Institute, I-BioStat, Hasselt University, Diepenbeek, Belgium.
Ecol Lett. 2025 Mar;28(3):e70094. doi: 10.1111/ele.70094.
Online portals have facilitated collecting extensive biodiversity data by naturalists, offering unprecedented coverage and resolution in space and time. Despite being the most widely available class of biodiversity data, opportunistically collected records have remained largely inaccessible to community ecologists since the imperfect and highly heterogeneous detection process can severely bias inference. We present a novel statistical approach that leverages these datasets by embedding a spatiotemporal joint species distribution model within a flexible site-occupancy framework. Our model addresses variable detection probabilities across visits and species by modelling phenological patterns and by extending the use of latent variables to characterise observer-specific detection and reporting behaviour. We apply our model to an opportunistically collected dataset on lentic odonates, encompassing over 100,000 waterbody visits in Flanders (N-Belgium), to show that the model provides insights into biological communities at high resolution, including phenology, interannual trends, environmental associations and spatiotemporal co-distributional patterns in community composition.
在线平台为博物学家收集广泛的生物多样性数据提供了便利,在空间和时间上提供了前所未有的覆盖范围和分辨率。尽管机会性收集的记录是最广泛可用的生物多样性数据类别,但由于不完美且高度异质的检测过程会严重偏向推断,社区生态学家在很大程度上仍无法获取这些记录。我们提出了一种新颖的统计方法,通过在灵活的地点占用框架内嵌入时空联合物种分布模型来利用这些数据集。我们的模型通过对物候模式进行建模,并通过扩展使用潜在变量来表征观察者特定的检测和报告行为,来解决不同访问和物种之间变化的检测概率问题。我们将我们的模型应用于一个关于静水蜻蜓目昆虫的机会性收集数据集,该数据集涵盖了比利时北部弗拉芒地区超过10万次水体访问,以表明该模型能够以高分辨率洞察生物群落,包括物候、年际趋势、环境关联以及群落组成中的时空共分布模式。