Suppr超能文献

经贝尔定理认证的实验性量子密钥分发。

Experimental quantum key distribution certified by Bell's theorem.

机构信息

Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.

School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland.

出版信息

Nature. 2022 Jul;607(7920):682-686. doi: 10.1038/s41586-022-04941-5. Epub 2022 Jul 27.

Abstract

Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorization to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols such as the Bennett-Brassard scheme provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realized so far are subject to a new class of attacks exploiting a mismatch between the quantum states or measurements implemented and their theoretical modelling, as demonstrated in numerous experiments. Here we present the experimental realization of a complete quantum key distribution protocol immune to these vulnerabilities, following Ekert's pioneering proposal to use entanglement to bound an adversary's information from Bell's theorem. By combining theoretical developments with an improved optical fibre link generating entanglement between two trapped-ion qubits, we obtain 95,628 key bits with device-independent security from 1.5 million Bell pairs created during eight hours of run time. We take steps to ensure that information on the measurement results is inaccessible to an eavesdropper. These measurements are performed without space-like separation. Our result shows that provably secure cryptography under general assumptions is possible with real-world devices, and paves the way for further quantum information applications based on the device-independence principle.

摘要

加密密钥交换协议传统上依赖于计算假设,例如素数分解的难度,以提供针对窃听攻击的安全性。值得注意的是,量子密钥分发协议,如 Bennett-Brassard 方案,提供了针对此类攻击的信息论安全性,这是一种比经典手段更强大的安全性。然而,迄今为止实现的量子协议受到一类新的攻击的影响,这些攻击利用了所实现的量子态或测量与其理论模型之间的不匹配,这在许多实验中都得到了证明。在这里,我们展示了一种完全免疫这些漏洞的量子密钥分发协议的实验实现,该协议遵循 Ekert 的开创性提议,即使用纠缠来限制对手的信息,以满足贝尔定理。通过将理论发展与改进的光纤链路相结合,该链路在两个囚禁离子量子位之间产生纠缠,我们从 8 小时运行时间内创建的 150 万对贝尔对中获得了 95628 个具有设备独立性安全性的密钥位。我们采取措施确保测量结果的信息对窃听者不可用。这些测量是在没有时空分离的情况下进行的。我们的结果表明,在一般假设下使用实际设备可以实现可证明安全的密码学,并为基于设备独立性原则的进一步量子信息应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验