Yogi Yashwant S, Parmar Harsharaj B, Fattahi Juybari Hamid, Nejati Sina, Rao Akshay K, Roy Rishav, Zarei Mojtaba, Li Longnan, Sett Soumyadip, Das Abhimanyu, Miljkovic Nenad, Weibel Justin A, Warsinger David M
School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, 61801, USA.
Commun Eng. 2025 Mar 15;4(1):48. doi: 10.1038/s44172-025-00348-y.
To address growing water scarcity, we must improve the energy efficiency of thermal desalination technologies such as air gap membrane distillation. However, promising functional materials such as slippery liquid infused porous surfaces have not yet implemented for any desalination technology. Here, we fabricate and test slippery liquid infused porous surfaces (using Krytox 16,256 lubricant and CuO nanostructures) in an air gap membrane distillation apparatus. System-level transport models, validated by experimental data, establish a framework for improving performance through enhanced condensation surfaces. Results are obtained across a range of temperatures (50-80 °C), salinities (5-105 g/kg), and module lengths. We find that small air gap thickness and efficient droplet shedding significantly improves performance. The CuO Krytox process achieves these with a conductive-self-limiting coating, high nanostructure rugosity, strong covalent and metallic bonding, high hydrophobicity, minimal droplet pinning sites, and ultra-low contact angle hysteresis. The greatest efficiency enhancement from SLIPS is derived from the improved droplet shedding, which allows for reduced gap sizes without flooding, and is further augmented by the increased permeate flux.
为应对日益严重的水资源短缺问题,我们必须提高诸如气隙膜蒸馏等热脱盐技术的能源效率。然而,诸如注入滑液的多孔表面等有前景的功能材料尚未应用于任何脱盐技术。在此,我们在气隙膜蒸馏装置中制备并测试了注入滑液的多孔表面(使用 Krytox 16,256 润滑剂和 CuO 纳米结构)。通过实验数据验证的系统级传输模型,建立了一个通过增强冷凝表面来提高性能的框架。在一系列温度(50 - 80°C)、盐度(5 - 105 g/kg)和模块长度下获得了结果。我们发现小气隙厚度和高效的液滴脱落显著提高了性能。CuO Krytox 工艺通过导电自限涂层、高纳米结构粗糙度、强共价键和金属键、高疏水性、最小的液滴钉扎位点以及超低的接触角滞后实现了这些。注入滑液的多孔表面(SLIPS)带来的最大效率提升源自改进的液滴脱落,这使得在不发生液泛的情况下能够减小间隙尺寸,并且渗透通量的增加进一步增强了这种效果。