School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia.
School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, QLD, 4072, Australia.
ISME J. 2022 Nov;16(11):2547-2560. doi: 10.1038/s41396-022-01298-5. Epub 2022 Aug 6.
Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.
尽管寒冷沙漠土壤中的水分和养分严重受限,但土壤微生物群仍然茁壮成长。在东南极土壤中,细菌的初级生产力是由痕量气体氧化和非依赖光照的 RuBisCO 形式 IE 支持的。本研究旨在确定大气化学生产是否广泛存在于南极、北极和青藏高原寒冷沙漠中,以确定痕量气体化学生物类群的广度,并进一步描述该过程的遗传决定因素。H 氧化普遍存在,远远超过了报道的满足类似土壤微生物群维持需求的速率。大气化学生产在全球范围内发生,对南极和高北极的碳固定有显著贡献(p<0.05)。对 18 个寒冷沙漠宏基因组、230 个去重复的中高质量衍生宏基因组组装基因组(MAG)和另外 24080 个公开可用基因组进行了分类和功能分析。氢营养和羧化营养生长标记广泛存在。发现 RuBisCO IE 与代表 Chloroflexota、Firmicutes、Deinococcota 和 Verrucomicrobiota 基因组中的痕量气体氧化酶共同存在。我们通过系统发育、基因结构分析和同源建模发现了一种新的高亲和力 [NiFe]-氢化酶组 1m,并揭示了 RuBisCO 形式 IE(rbcL1E)以及高亲和力 1h 和 1l [NiFe]-氢化酶组内的大量遗传多样性。我们得出结论,大气化学生产是一种全球分布的现象,延伸到寒冷的沙漠中,对全球碳循环和环境储层中细菌的生存有重大影响。