Suppr超能文献

人工智能预测正颌手术结果是否优于传统线性回归方法?

Does artificial intelligence predict orthognathic surgical outcomes better than conventional linear regression methods?

出版信息

Angle Orthod. 2024 Sep 1;94(5):549-556. doi: 10.2319/111423-756.1.

Abstract

OBJECTIVES

To evaluate the performance of an artificial intelligence (AI) model in predicting orthognathic surgical outcomes compared to conventional prediction methods.

MATERIALS AND METHODS

Preoperative and posttreatment lateral cephalograms from 705 patients who underwent combined surgical-orthodontic treatment were collected. Predictors included 254 input variables, including preoperative skeletal and soft-tissue characteristics, as well as the extent of orthognathic surgical repositioning. Outcomes were 64 Cartesian coordinate variables of 32 soft-tissue landmarks after surgery. Conventional prediction models were built applying two linear regression methods: multivariate multiple linear regression (MLR) and multivariate partial least squares algorithm (PLS). The AI-based prediction model was based on the TabNet deep neural network. The prediction accuracy was compared, and the influencing factors were analyzed.

RESULTS

In general, MLR demonstrated the poorest predictive performance. Among 32 soft-tissue landmarks, PLS showed more accurate prediction results in 16 soft-tissue landmarks above the upper lip, whereas AI outperformed in six landmarks located in the lower border of the mandible and neck area. The remaining 10 landmarks presented no significant difference between AI and PLS prediction models.

CONCLUSIONS

AI predictions did not always outperform conventional methods. A combination of both methods may be more effective in predicting orthognathic surgical outcomes.

摘要

目的

评估人工智能 (AI) 模型在预测正颌手术结果方面的性能,与传统预测方法相比。

材料和方法

收集了 705 名接受联合正颌正畸治疗的患者的术前和术后侧位头颅侧位片。预测因子包括 254 个输入变量,包括术前骨骼和软组织特征,以及正颌手术复位的程度。结果是手术后 32 个软组织标志点的 64 个笛卡尔坐标变量。应用两种线性回归方法(多元线性回归 (MLR) 和多元偏最小二乘算法 (PLS))建立了传统预测模型。基于 TabNet 的 AI 预测模型是基于深度神经网络的。比较了预测精度,并分析了影响因素。

结果

总体而言,MLR 表现出最差的预测性能。在 32 个软组织标志点中,PLS 在 16 个位于上唇上方的软组织标志点上表现出更准确的预测结果,而 AI 在位于下颌骨和颈部区域的 6 个标志点上表现更好。其余 10 个标志点在 AI 和 PLS 预测模型之间没有显著差异。

结论

AI 预测并不总是优于传统方法。两种方法的结合可能更有效地预测正颌手术结果。

相似文献

9
Predicting soft tissue changes after orthognathic surgery: .预测正颌手术后软组织的变化: 。
Angle Orthod. 2019 Nov;89(6):910-916. doi: 10.2319/120518-851.1. Epub 2019 May 31.

引用本文的文献

3
8
Factors influencing the development of artificial intelligence in orthodontics.影响正畸学中人工智能发展的因素。
Orthod Craniofac Res. 2024 Dec;27 Suppl 2(Suppl 2):6-12. doi: 10.1111/ocr.12806. Epub 2024 May 7.

本文引用的文献

7
Automated identification of cephalometric landmarks:自动识别头影测量标志点:
Angle Orthod. 2020 Jan;90(1):69-76. doi: 10.2319/022019-129.1. Epub 2019 Jul 22.
8
Automated identification of cephalometric landmarks: .自动识别头影测量标志点:.
Angle Orthod. 2019 Nov;89(6):903-909. doi: 10.2319/022019-127.1. Epub 2019 Jul 8.
9
Predicting soft tissue changes after orthognathic surgery: .预测正颌手术后软组织的变化: 。
Angle Orthod. 2019 Nov;89(6):910-916. doi: 10.2319/120518-851.1. Epub 2019 May 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验