Suppr超能文献

用于帕金森症患者分类的多项逻辑回归算法。

Multinomial logistic regression algorithm for the classification of patients with parkinsonisms.

作者信息

Štokelj Eva, Rus Tomaž, Jamšek Jan, Trošt Maja, Simončič Urban

机构信息

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000, Ljubljana, Slovenia.

Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000, Ljubljana, Slovenia.

出版信息

EJNMMI Res. 2025 Mar 16;15(1):24. doi: 10.1186/s13550-025-01210-0.

Abstract

BACKGROUND

Accurate differential diagnosis of neurodegenerative parkinsonisms is challenging due to overlapping early symptoms and high rates of misdiagnosis. To improve the diagnostic accuracy, we developed an integrated classification algorithm using multinomial logistic regression and Scaled Subprofile Model/Principal Component Analysis (SSM/PCA) applied to F-fluorodeoxyglucose positron emission tomography (FDG-PET) brain images. In this novel classification approach, SSM/PCA is applied to FDG-PET brain images of patients with various parkinsonisms, which are compared against the constructed undetermined images. This process involves spatial normalization of the images and dimensionality reduction via PCA. The resulting principal components are then used in a multinomial logistic regression model, which generates disease-specific topographies that can be used to classify new patients. The algorithm was trained and optimized on a cohort of patients with neurodegenerative parkinsonisms and subsequently validated on a separate cohort of patients with parkinsonisms.

RESULTS

The Area Under the Curve (AUC) values were the highest for progressive supranuclear palsy (PSP) (AUC = 0.95), followed by Parkinson's disease (PD) (AUC = 0.93) and multiple system atrophy (MSA) (AUC = 0.90). When classifying the patients based on their calculated probability for each group, the desired tradeoff between sensitivity and specificity had to be selected. With a 99% probability threshold for classification into a disease group, 82% of PD patients, 29% of MSA patients, and 77% of PSP patients were correctly identified. Only 5% of PD, 6% of MSA and 6% of PSP patients were misclassified, whereas the remaining patients (13% of PD, 65% of MSA and 18% of PSP) are undetermined by our classification algorithm.

CONCLUSIONS

Compared to existing algorithms, this approach offers comparable accuracy and reliability in diagnosing PD, MSA, and PSP with no need of healthy control images. It can also distinguish between multiple types of parkinsonisms simultaneously and offers the flexibility to easily accommodate new groups.

摘要

背景

由于早期症状重叠且误诊率高,神经退行性帕金森综合征的准确鉴别诊断具有挑战性。为提高诊断准确性,我们开发了一种综合分类算法,该算法使用多项逻辑回归以及应用于氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)脑图像的尺度子剖面模型/主成分分析(SSM/PCA)。在这种新颖的分类方法中,SSM/PCA应用于患有各种帕金森综合征患者的FDG-PET脑图像,并与构建的未确定图像进行比较。此过程涉及图像的空间归一化和通过主成分分析进行降维。然后将得到的主成分用于多项逻辑回归模型,该模型生成可用于对新患者进行分类的疾病特异性地形图。该算法在一组神经退行性帕金森综合征患者中进行训练和优化,随后在另一组帕金森综合征患者中进行验证。

结果

进行性核上性麻痹(PSP)的曲线下面积(AUC)值最高(AUC = 0.95),其次是帕金森病(PD)(AUC = 0.93)和多系统萎缩(MSA)(AUC = 0.90)。在根据计算出的每组概率对患者进行分类时,必须选择敏感性和特异性之间的理想权衡。将疾病组分类的概率阈值设为99%时,82%的PD患者、29%的MSA患者和77%的PSP患者被正确识别。只有5%的PD患者、6%的MSA患者和6%的PSP患者被误分类,而其余患者(13%的PD患者、65%的MSA患者和18%的PSP患者)未被我们的分类算法确定。

结论

与现有算法相比,该方法在诊断PD、MSA和PSP时具有相当的准确性和可靠性,无需健康对照图像。它还可以同时区分多种类型的帕金森综合征,并具有轻松容纳新组别的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0072/11911283/04f090e2d4bc/13550_2025_1210_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验