Suppr超能文献

帕金森综合征的鉴别诊断:基于临床和自动代谢脑图谱方法的比较。

Differential diagnosis of parkinsonian syndromes: a comparison of clinical and automated - metabolic brain patterns' based approach.

作者信息

Rus Tomaž, Tomše Petra, Jensterle Luka, Grmek Marko, Pirtošek Zvezdan, Eidelberg David, Tang Chris, Trošt Maja

机构信息

Department of Neurology, UMC Ljubljana, Zaloška cesta 2, 1000, Ljubljana, Slovenia.

Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.

出版信息

Eur J Nucl Med Mol Imaging. 2020 Nov;47(12):2901-2910. doi: 10.1007/s00259-020-04785-z. Epub 2020 Apr 27.

Abstract

PURPOSE

Differentiation among parkinsonian syndromes may be clinically challenging, especially at early disease stages. In this study, we used F-FDG-PET brain imaging combined with an automated image classification algorithm to classify parkinsonian patients as Parkinson's disease (PD) or as an atypical parkinsonian syndrome (APS) at the time when the clinical diagnosis was still uncertain. In addition to validating the algorithm, we assessed its utility in a "real-life" clinical setting.

METHODS

One hundred thirty-seven parkinsonian patients with uncertain clinical diagnosis underwent F-FDG-PET and were classified using an automated image-based algorithm. For 66 patients in cohort A, the algorithm-based diagnoses were compared with their final clinical diagnoses, which were the gold standard for cohort A and were made 2.2 ± 1.1 years (mean ± SD) later by a movement disorder specialist. Seventy-one patients in cohort B were diagnosed by general neurologists, not strictly following diagnostic criteria, 2.5 ± 1.6 years after imaging. The clinical diagnoses were compared with the algorithm-based ones, which were considered the gold standard for cohort B.

RESULTS

Image-based automated classification of cohort A resulted in 86.0% sensitivity, 92.3% specificity, 97.4% positive predictive value (PPV), and 66.7% negative predictive value (NPV) for PD, and 84.6% sensitivity, 97.7% specificity, 91.7% PPV, and 95.5% NPV for APS. In cohort B, general neurologists achieved 94.7% sensitivity, 83.3% specificity, 81.8% PPV, and 95.2% NPV for PD, while 88.2%, 76.9%, 71.4%, and 90.9% for APS.

CONCLUSION

The image-based algorithm had a high specificity and the predictive values in classifying patients before a final clinical diagnosis was reached by a specialist. Our data suggest that it may improve the diagnostic accuracy by 10-15% in PD and 20% in APS when a movement disorder specialist is not easily available.

摘要

目的

帕金森综合征之间的鉴别在临床上可能具有挑战性,尤其是在疾病早期阶段。在本研究中,我们使用F-FDG-PET脑成像结合自动图像分类算法,在临床诊断仍不确定时将帕金森病患者分类为帕金森病(PD)或非典型帕金森综合征(APS)。除了验证该算法外,我们还评估了其在“现实生活”临床环境中的效用。

方法

137例临床诊断不确定的帕金森病患者接受了F-FDG-PET检查,并使用基于图像的自动算法进行分类。对于队列A中的66例患者,将基于算法的诊断结果与其最终临床诊断结果进行比较,最终临床诊断结果是队列A的金标准,由运动障碍专家在2.2±1.1年(均值±标准差)后做出。队列B中的71例患者由普通神经科医生诊断,成像后2.5±1.6年,这些医生并未严格遵循诊断标准。将临床诊断结果与基于算法的诊断结果进行比较,基于算法的诊断结果被视为队列B的金标准。

结果

基于图像的队列A自动分类对PD的敏感性为86.0%,特异性为92.3%,阳性预测值(PPV)为97.4%,阴性预测值(NPV)为66.7%;对APS的敏感性为84.6%,特异性为97.7%,PPV为91.7%,NPV为95.5%。在队列B中,普通神经科医生对PD的敏感性为94.7%,特异性为83.3%,PPV为81.8%,NPV为95.2%;对APS的敏感性、特异性、PPV和NPV分别为88.2%、76.9%、71.4%和90.9%。

结论

在专家做出最终临床诊断之前,基于图像的算法在对患者进行分类时具有较高的特异性和预测价值。我们的数据表明,当运动障碍专家不易获得时,该算法在PD中的诊断准确性可能提高10%-15%,在APS中提高20%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验