Crîstiu Daniel, You Fengqi, d'Amore Federico, Bezzo Fabrizio
CAPE-Lab-Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova, Italy.
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
Ind Eng Chem Res. 2025 Mar 3;64(10):5493-5510. doi: 10.1021/acs.iecr.4c04040. eCollection 2025 Mar 12.
This study develops a multiperiod mixed-integer linear programming model for strategic planning of direct air capture (DAC) supply chains across Europe aiming at minimizing overall costs under uncertainty. DAC is pivotal for achieving net-zero targets and removing CO from the atmosphere to enable negative emissions. The optimization considers uncertainty in key parameters to ensure resilient decision-making. The model incorporates the influence of ambient air conditions on DAC performance, with temperature and humidity impacting productivity and energy consumption. Country-specific energy costs and greenhouse gas emission factors are accounted for, impacting the net cost of CO removal. Results indicate that with ambitious targets, technology learning curves, and renewable electricity transition, costs can fall to approximately 121 €/t CO by 2050, with 108 €/t attributed to capture costs. The findings highlight the importance of technological advancements and provide a systematic framework for policymakers to design resilient and cost-effective supply chains for large-scale deployment, positioning DAC as a potential decarbonization alternative for hard-to-abate emissions.
本研究针对欧洲直接空气捕获(DAC)供应链的战略规划开发了一个多周期混合整数线性规划模型,旨在将不确定性下的总成本降至最低。DAC对于实现净零目标以及从大气中去除二氧化碳以实现负排放至关重要。该优化考虑了关键参数的不确定性,以确保做出具有弹性的决策。该模型纳入了环境空气条件对DAC性能的影响,温度和湿度会影响生产率和能源消耗。考虑了各国特定的能源成本和温室气体排放因子,它们会影响二氧化碳去除的净成本。结果表明,在设定宏伟目标、技术学习曲线和可再生电力转型的情况下,到2050年成本可降至约121欧元/吨二氧化碳,其中108欧元/吨归因于捕获成本。研究结果凸显了技术进步的重要性,并为政策制定者提供了一个系统框架,以设计具有弹性且成本效益高的供应链用于大规模部署,使DAC成为难以减排排放的潜在脱碳替代方案。