Jian Fangfang, Cai Haihua, Chen Qushuo, Pan Xiaoyong, Feng Weiwei, Yuan Ye
Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
DigitalGene, Ltd, Shanghai, China.
Front Immunol. 2025 Feb 28;16:1550252. doi: 10.3389/fimmu.2025.1550252. eCollection 2025.
The key roles of Major Histocompatibility Complex (MHC) Class I and II molecules in the immune system are well established. This study aims to develop a novel machine learning framework for predicting antigen peptide presentation by MHC Class I and II molecules. By integrating large-scale mass spectrometry data and other relevant data types, we present a prediction model OnmiMHC based on deep learning. We rigorously assessed its performance using an independent test set, OnmiMHC achieves a PR-AUC score of 0.854 and a TOP20%-PPV of 0.934 in the MHC-I task, which outperforms existing methods. Likewise, in the domain of MHC-II prediction, our model OnmiMHC exhibits a PR-AUC score of 0.606 and a TOP20%-PPV of 0.690, outperforming other baseline methods. These results demonstrate the superiority of our model OnmiMHC in accurately predicting peptide-MHC binding affinities across both MHC-I and MHC-II molecules. With its superior accuracy and predictive capability, our model not only excels in general predictive tasks but also achieves significant results in the prediction of neoantigens for specific cancer types. Particularly for Uterine Corpus Endometrial Carcinoma (UCEC), our model has successfully predicted neoantigens with a high binding probability to common human alleles. This discovery is of great significance for the development of personalized tumor vaccines targeting UCEC.
主要组织相容性复合体(MHC)I类和II类分子在免疫系统中的关键作用已得到充分确立。本研究旨在开发一种新型机器学习框架,用于预测MHC I类和II类分子的抗原肽呈递。通过整合大规模质谱数据和其他相关数据类型,我们提出了一种基于深度学习的预测模型OnmiMHC。我们使用独立测试集严格评估了其性能,OnmiMHC在MHC-I任务中实现了0.854的PR-AUC分数和0.934的TOP20%-PPV,优于现有方法。同样,在MHC-II预测领域,我们的模型OnmiMHC表现出0.606的PR-AUC分数和0.690的TOP20%-PPV,优于其他基线方法。这些结果证明了我们的模型OnmiMHC在准确预测MHC-I和MHC-II分子的肽-MHC结合亲和力方面的优越性。凭借其卓越的准确性和预测能力,我们的模型不仅在一般预测任务中表现出色,而且在特定癌症类型的新抗原预测中也取得了显著成果。特别是对于子宫内膜癌(UCEC),我们的模型成功预测了与常见人类等位基因具有高结合概率的新抗原。这一发现对于开发针对UCEC的个性化肿瘤疫苗具有重要意义。