Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.
Cancer Immunol Res. 2020 Mar;8(3):396-408. doi: 10.1158/2326-6066.CIR-19-0464. Epub 2019 Dec 23.
Computational prediction of binding between neoantigen peptides and major histocompatibility complex (MHC) proteins can be used to predict patient response to cancer immunotherapy. Current neoantigen predictors focus on estimation of MHC binding affinity and are limited by low predictive value for actual peptide presentation, inadequate support for rare MHC alleles, and poor scalability to high-throughput data sets. To address these limitations, we developed MHCnuggets, a deep neural network method that predicts peptide-MHC binding. MHCnuggets can predict binding for common or rare alleles of MHC class I or II with a single neural network architecture. Using a long short-term memory network (LSTM), MHCnuggets accepts peptides of variable length and is faster than other methods. When compared with methods that integrate binding affinity and MHC-bound peptide (HLAp) data from mass spectrometry, MHCnuggets yields a 4-fold increase in positive predictive value on independent HLAp data. We applied MHCnuggets to 26 cancer types in The Cancer Genome Atlas, processing 26.3 million allele-peptide comparisons in under 2.3 hours, yielding 101,326 unique predicted immunogenic missense mutations (IMM). Predicted IMM hotspots occurred in 38 genes, including 24 driver genes. Predicted IMM load was significantly associated with increased immune cell infiltration ( < 2 × 10), including CD8 T cells. Only 0.16% of predicted IMMs were observed in more than 2 patients, with 61.7% of these derived from driver mutations. Thus, we describe a method for neoantigen prediction and its performance characteristics and demonstrate its utility in data sets representing multiple human cancers.
计算预测新抗原肽与主要组织相容性复合体(MHC)蛋白之间的结合可以用于预测癌症免疫治疗的患者反应。目前的新抗原预测器侧重于 MHC 结合亲和力的估计,其局限性在于对实际肽呈递的预测值低、对罕见 MHC 等位基因的支持不足以及对高通量数据集的可扩展性差。为了解决这些限制,我们开发了 MHCnuggets,这是一种预测肽-MHC 结合的深度神经网络方法。MHCnuggets 可以使用单个神经网络架构预测 MHC 类 I 或 II 的常见或罕见等位基因的结合。使用长短期记忆网络(LSTM),MHCnuggets 接受可变长度的肽,并且比其他方法更快。与整合来自质谱的结合亲和力和 MHC 结合肽(HLAp)数据的方法相比,MHCnuggets 在独立的 HLAp 数据上的阳性预测值提高了 4 倍。我们将 MHCnuggets 应用于癌症基因组图谱中的 26 种癌症类型,在不到 2.3 小时内处理了 2630 万种等位基因-肽比较,产生了 101326 个独特的预测免疫原性错义突变(IMM)。预测的 IMM 热点发生在 38 个基因中,包括 24 个驱动基因。预测的 IMM 负荷与免疫细胞浸润的增加显著相关(<2×10),包括 CD8 T 细胞。预测的 IMM 仅在超过 2 名患者中观察到 0.16%,其中 61.7%源自驱动突变。因此,我们描述了一种新抗原预测方法及其性能特征,并证明了它在代表多种人类癌症的数据集上的实用性。