Chang Yunjian, Wu Ligang
Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae595.
Human leukocyte antigen class I (HLA-I) and class II (HLA-II) proteins play an essential role in epitope binding and presentation to initiate an immune response. Accurate prediction of peptide-HLA (pHLA) binding and presentation is critical for developing effective immunotherapies. However, current tools can predict antigens exclusively for pHLA-I or pHLA-II, but not both; have constraints on peptide length; and commonly show unsatisfactory predictive accuracy. Here, we developed a convolution and attention-based model, CapHLA, trained with eluted ligand and binding affinity mass spectrometry data, to predict peptide presentation probability (PB) and binding affinities (BA) for HLA-I and HLA-II. In comparison with 11 other methods, CapHLA consistently showed improved performance in predicting pHLA BA and PB, particularly in HLA-II and non-classical peptide length datasets. Using CapHLA PB and BA predictions in combination with antigen expression level (EP) from transcriptomic data, we developed a neoantigen quality model for predicting immunotherapy response. In analyses of clinical response among 276 cancer patients given immunotherapy and overall survival in 7228 cancer patients, our neoantigen quality model outperformed other genetics-based models in predicting response to checkpoint inhibitors and patient prognosis. This study provides a versatile neoantigen screening tool, illustrating the prognostic value of neoantigen quality.
人类白细胞抗原 I 类(HLA-I)和 II 类(HLA-II)蛋白在表位结合和呈递以启动免疫反应中发挥着至关重要的作用。准确预测肽 - HLA(pHLA)结合和呈递对于开发有效的免疫疗法至关重要。然而,目前的工具只能单独预测 pHLA-I 或 pHLA-II 的抗原,不能同时预测两者;对肽长度有限制;并且通常显示出不尽人意的预测准确性。在此,我们开发了一种基于卷积和注意力的模型 CapHLA,用洗脱配体和结合亲和力质谱数据进行训练,以预测 HLA-I 和 HLA-II 的肽呈递概率(PB)和结合亲和力(BA)。与其他 11 种方法相比,CapHLA 在预测 pHLA BA 和 PB 方面始终表现出更好的性能,特别是在 HLA-II 和非经典肽长度数据集中。结合 CapHLA PB 和 BA 预测与转录组数据中的抗原表达水平(EP),我们开发了一种用于预测免疫治疗反应的新抗原质量模型。在对 276 名接受免疫治疗的癌症患者的临床反应和 7228 名癌症患者的总生存期进行分析时,我们的新抗原质量模型在预测对检查点抑制剂的反应和患者预后方面优于其他基于遗传学的模型。本研究提供了一种通用的新抗原筛选工具,阐明了新抗原质量的预后价值。