Liu Xiaoyu, Clemens Daniel L, Lee Bai-Yu, Aguirre Roman, Horwitz Marcus A, Zhou Z Hong
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
The California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA.
bioRxiv. 2025 Mar 3:2025.03.02.641097. doi: 10.1101/2025.03.02.641097.
is a highly infectious bacterium, a Tier 1-select agent, and the causative agent of tularemia, a potentially fatal zoonotic disease. In this study originally aiming to identify anti-tularemia drug targets, we serendipitously determined the atomic structures and identified their components of the native RibD-enolase protein complex in ; and subsequently systematically characterized the catalytic functions of the RibD-enolase complex. Originally discovered as individually protein in and yeast, respectively, RibD and enolase are two essential enzymes involved in distinct metabolic pathways, both of which could serve as potential therapeutic targets for tularemia treatment and prevention. Our biochemical validation using pull-down assays confirmed the formation of this complex , revealing that all eluted RibD is bound to enolase, while the majority of enolase remained uncomplexed. Structural analysis reveals unique features of the complex, including key RibD-enolase interactions that mediate complex assembly and β-strand swapping between RibD subunits. Furthermore, molecular dynamics simulations of the ligand-bound RibD-enolase complex highlight localized conformational changes within the substrate-binding sites and suggest a gating mechanism between RibD's substrate and cofactor-binding sites to ensure efficient uptake and turnover. Despite the physical association between RibD and enolase, enzymatic assays indicated their catalytic activities are independent of each other, thus the complex may have alternative functional roles that warrant further exploration. Our study provides the first structural and biochemical characterization of the RibD-enolase complex, establishing a foundation for further investigations into its functional significance in and potential antibacterial development.
是一种高度传染性的细菌,属于一级选择生物制剂,也是兔热病的病原体,兔热病是一种潜在致命的人畜共患病。在这项最初旨在确定抗兔热病药物靶点的研究中,我们意外地确定了天然RibD-烯醇酶蛋白复合物的原子结构并鉴定了其组成成分;随后系统地表征了RibD-烯醇酶复合物的催化功能。RibD和烯醇酶最初分别在[具体物种1]和酵母中作为单独的蛋白质被发现,它们是参与不同代谢途径的两种必需酶,两者都可作为兔热病治疗和预防的潜在治疗靶点。我们使用下拉分析进行的生化验证证实了这种复合物的形成,表明所有洗脱的RibD都与烯醇酶结合,而大多数烯醇酶仍未形成复合物。结构分析揭示了该复合物的独特特征,包括介导复合物组装的关键RibD-烯醇酶相互作用以及RibD亚基之间的β链交换。此外,配体结合的RibD-烯醇酶复合物的分子动力学模拟突出了底物结合位点内的局部构象变化,并提出了RibD的底物和辅因子结合位点之间的门控机制,以确保有效摄取和周转。尽管RibD和烯醇酶之间存在物理关联,但酶活性测定表明它们的催化活性相互独立,因此该复合物可能具有值得进一步探索的替代功能作用。我们的研究首次对RibD-烯醇酶复合物进行了结构和生化表征,为进一步研究其在[具体物种2]中的功能意义和潜在的抗菌开发奠定了基础。