Berden Lisa, Rajan Nicholas, Mbouombouo Mfossa André Claude, De Bie Isabeau, Etlioglu Emre, Benotmane Mohammed Abderrafi, Verslegers Mieke, Aourz Najat, Smolders Ilse, Rigo Jean-Michel, Brône Bert, Quintens Roel
Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
Laboratory for Neurophysiology, BIOMED Research Institute, UHasselt, Hasselt, Belgium.
Cell Mol Life Sci. 2025 Mar 17;82(1):118. doi: 10.1007/s00018-025-05643-7.
Embryonic DNA damage resulting from DNA repair deficiencies or exposure to ionizing radiation during early neurogenesis can lead to neurodevelopmental disorders, including microcephaly. This has been linked to an excessive DNA damage response in dorsal neural progenitor cells (NPCs), resulting in p53-dependent apoptosis and premature neuronal differentiation which culminates in depletion of the NPC pool. However, the effect of DNA damage on ventral forebrain NPCs, the origin of interneurons, remains unclear. In this study, we investigated the sequelae of irradiation of mouse fetuses at an early timepoint of forebrain neurogenesis. We focused on the neocortex (NCX) and medial ganglionic eminence (MGE), key regions for developing dorsal and ventral NPCs, respectively. Although both regions showed a typical p53-mediated DNA damage response consisting of cell cycle arrest, DNA repair and apoptosis, NCX cells displayed prolonged cell cycle arrest, while MGE cells exhibited more sustained apoptosis. Moreover, irradiation reduced the migration speed of interneurons in acute living brain slices and MGE explants, the latter indicating a cell-intrinsic component in the defect. RNA sequencing and protein analyses revealed disruptions in actin and microtubule cytoskeletal-related cellular machinery, particularly in MGE cells. Despite massive acute apoptosis and an obvious interneuron migration defect, prenatally irradiated animals did not show increased sensitivity to pentylenetetrazole-induced seizures, nor was there a reduction in cortical interneurons in young adult mice. This suggests a high plasticity of the developing brain to acute insults during early neurogenesis. Overall, our findings indicate that embryonic DNA damage induces region-specific responses, potentially linked to neurodevelopmental disorders.
在早期神经发生过程中,由于DNA修复缺陷或暴露于电离辐射而导致的胚胎DNA损伤可引发神经发育障碍,包括小头畸形。这与背侧神经祖细胞(NPCs)中过度的DNA损伤反应有关,导致p53依赖性细胞凋亡和神经元过早分化,最终导致NPC库的耗竭。然而,DNA损伤对腹侧前脑NPCs(中间神经元的起源)的影响仍不清楚。在本研究中,我们调查了在前脑神经发生的早期时间点对小鼠胎儿进行辐射的后果。我们重点关注新皮质(NCX)和内侧神经节隆起(MGE),它们分别是背侧和腹侧NPCs发育的关键区域。尽管这两个区域都表现出典型的由p53介导的DNA损伤反应,包括细胞周期停滞、DNA修复和细胞凋亡,但NCX细胞表现出延长的细胞周期停滞,而MGE细胞则表现出更持续的细胞凋亡。此外,辐射降低了急性活脑切片和MGE外植体中中间神经元的迁移速度,后者表明缺陷中存在细胞内在成分。RNA测序和蛋白质分析揭示了肌动蛋白和微管细胞骨架相关细胞机制的破坏,特别是在MGE细胞中。尽管存在大量急性细胞凋亡和明显的中间神经元迁移缺陷,但产前受辐照的动物对戊四氮诱导的癫痫发作没有表现出增加的敏感性,在年轻成年小鼠中皮质中间神经元也没有减少。这表明发育中的大脑在早期神经发生过程中对急性损伤具有高度的可塑性。总体而言,我们的研究结果表明,胚胎DNA损伤会引发区域特异性反应,这可能与神经发育障碍有关。