Liu Yuanzhong, Yang Xin, Ding Xinliang, Wang Jiarong, Xu Weitai, Wang Xiaoting, Zhang Liujiang, Yan Yiran, Wang Jia, Hou Yanna, Yang Lin, Chu Tianjiao, Jiang Qinglong, Zhu Xiangrong, Hu Ziyang, Kan Bin, Gao Xingyu, Fu Qiang, Yang Liyou, Chen Zhicai, Shao Shiyang, Lu Linfeng, Ji Xiaofei
The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences, 99 Haike Road, Zhangjiang Hi-Tech Park Pudong, Shanghai, 201210, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Small. 2025 Apr;21(17):e2502367. doi: 10.1002/smll.202502367. Epub 2025 Mar 17.
[4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) consistently exhibits inhomogeneous distribution on the substrate, which makes it a challenge for the growth of high-quality perovskite film, resulting in undesired interfacial losses at buried interfaces. Moreover, the flexible alkyl chains of Me-4PACz are not conducive to intermolecular interactions and hinder charge flow. Here, a novel molecule with 4-Methoxy-N-(4-methoxyphenyl)-N-phenylaniline (TPA) and carbazole backbone, named CzTPA is designed, which constituted Co-SAM with Me-4PACz. The two carboxyls on the end of carbazole will act as an anchoring group to cover the inadequate coverage of Me-4PACz on the NiO. The methoxy group on the TPA can passivation the uncoordinated Pb at the perovskite buried interface by the interaction of Pb─O. Additionally, the Me-4PACz can be restrained self-aggregation by interacting with the TPA group of CzTPA. The cooperation of CzTPA realizes the more homogeneous distribution of Me-4PACz on the NiO, efficient charge transport, and minimize buried interfacial defects. Accordingly, the CzTPA modification can significantly enhance the efficiency of 1.54-eV PSCs from 23.53% to 25.66% and sustain 91.4% of its original efficiency after 1992 h under continuous illumination at 65 °C. More importantly, a 1.68 eV of wide-bandgap PSC achieved a PCE of 22.75% with good photostability.
[4-(3,6-二甲基-9H-咔唑-9-基)丁基]膦酸(Me-4PACz)在基底上始终呈现不均匀分布,这给高质量钙钛矿薄膜的生长带来挑战,导致在掩埋界面处出现不期望的界面损失。此外,Me-4PACz的柔性烷基链不利于分子间相互作用并阻碍电荷流动。在此,设计了一种具有4-甲氧基-N-(4-甲氧基苯基)-N-苯胺(TPA)和咔唑主链的新型分子,命名为CzTPA,它与Me-4PACz构成了共自组装单分子层(Co-SAM)。咔唑末端的两个羧基将作为锚定基团,以弥补Me-4PACz在NiO上覆盖不足的问题。TPA上的甲氧基可通过Pb─O相互作用钝化钙钛矿掩埋界面处未配位的Pb。此外,Me-4PACz可通过与CzTPA的TPA基团相互作用来抑制自身聚集。CzTPA的协同作用实现了Me-4PACz在NiO上更均匀的分布、高效的电荷传输,并使掩埋界面缺陷最小化。因此,CzTPA修饰可将1.54 eV的钙钛矿太阳能电池(PSC)效率从23.53%显著提高到25.66%,并在65°C连续光照1992小时后保持其原始效率的91.4%。更重要的是,一个1.68 eV宽带隙的PSC实现了22.75%的光电转换效率(PCE),且具有良好的光稳定性。