Yang Wenhan, Lin Yuexin, Zhu Wenjing, Du Fenqi, Liu Jin, Ren Yumin, Wang Haibin, Liao Jinfeng, Yu Dejian, Fang Guojia, Li Meng, Zhang Rui, Yang Shengchun, Liang Chao
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Adv Mater. 2025 May;37(21):e2502865. doi: 10.1002/adma.202502865. Epub 2025 Apr 1.
Interfacial localized charges and interfacial losses from incompatible underlayers are critical factors limiting the efficiency improvement and market-integration of perovskite solar cells (PSCs). Herein, a novel interfacial chemical tuning strategy is proposed involving proton transfer between the amine head of pyridoxamine (PM) and the phosphonic acid anchoring group of [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), with simultaneous enhancement of charge delocalization through electrostatic attraction between opposite charged molecules. The Me-4PACz-PM charge polarization interface modulates the nickel oxide (NiO) charge states and the coordination environment at buried interfaces, consequently enhancing p-type conductivity and obtaining a more compatible band arrangement. The high-coverage and wettability of the NiO/Me-4PACz-PM underlayer also facilitate the deposition of high-quality perovskite films, releasing lattice strain and mitigating trap-assisted non-radiative recombination. Attributing to the implementation of charge polarization tunable interfaces, small-area devices and modules with an aperture area of 69 cm achieved impressive power conversion efficiencies (PCEs) of 26.34% (certified 25.48%) and 21.94% (certified 20.50%), respectively, and unencapsulated devices maintained their initial PCEs ≈90% after aging for 2000 h (ISOS-L-1) and 1500 h (ISOS-D-1). The broad applicability of charge polarization tunable interfaces and the successful scaling of large-area modules provide a reference for expanding PSCs applications.
来自不相容底层的界面局域电荷和界面损耗是限制钙钛矿太阳能电池(PSC)效率提升和市场整合的关键因素。在此,我们提出了一种新颖的界面化学调控策略,该策略涉及吡哆胺(PM)的胺基头部与[4-(3,6-二甲基-9H-咔唑-9-基)丁基]膦酸(Me-4PACz)的膦酸锚定基团之间的质子转移,同时通过相反电荷分子之间的静电吸引增强电荷离域。Me-4PACz-PM电荷极化界面调节了埋入界面处氧化镍(NiO)的电荷状态和配位环境,从而提高了p型电导率并获得了更匹配的能带排列。NiO/Me-4PACz-PM底层的高覆盖率和润湿性也有助于高质量钙钛矿薄膜的沉积,释放晶格应变并减轻陷阱辅助非辐射复合。由于电荷极化可调界面的实施,孔径面积为69 cm的小面积器件和模块分别实现了令人印象深刻的功率转换效率(PCE),即26.34%(认证值25.48%)和21.94%(认证值20.50%),并且未封装的器件在老化2000小时(ISOS-L-1)和1500小时(ISOS-D-1)后保持其初始PCE约90%。电荷极化可调界面的广泛适用性以及大面积模块的成功放大为扩展PSC的应用提供了参考。