Suppr超能文献

PyTSC:交通信号控制中多智能体强化学习的统一平台

PyTSC: A Unified Platform for Multi-Agent Reinforcement Learning in Traffic Signal Control.

作者信息

Bokade Rohit, Jin Xiaoning

机构信息

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.

出版信息

Sensors (Basel). 2025 Feb 20;25(5):1302. doi: 10.3390/s25051302.

Abstract

Multi-Agent Reinforcement Learning (MARL) presents a promising approach for addressing the complexity of Traffic Signal Control (TSC) in urban environments. However, existing platforms for MARL-based TSC research face challenges such as slow simulation speeds and convoluted, difficult-to-maintain codebases. To address these limitations, we introduce PyTSC, a robust and flexible simulation environment that facilitates the training and evaluation of MARL algorithms for TSC. PyTSC integrates multiple simulators, such as SUMO and CityFlow, and offers a streamlined API, enabling researchers to explore a broad spectrum of MARL approaches efficiently. PyTSC accelerates experimentation and provides new opportunities for advancing intelligent traffic management systems in real-world applications.

摘要

多智能体强化学习(MARL)为解决城市环境中交通信号控制(TSC)的复杂性提供了一种很有前景的方法。然而,现有的基于MARL的TSC研究平台面临着诸如模拟速度慢以及代码库复杂、难以维护等挑战。为了解决这些限制,我们引入了PyTSC,这是一个强大且灵活的模拟环境,便于对用于TSC的MARL算法进行训练和评估。PyTSC集成了多个模拟器,如SUMO和CityFlow,并提供了一个简化的应用程序编程接口(API),使研究人员能够高效地探索广泛的MARL方法。PyTSC加快了实验速度,并为在实际应用中推进智能交通管理系统提供了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d74b/11902778/fa7c44d5d7d0/sensors-25-01302-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验