Bokade Rohit, Jin Xiaoning
Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA.
Sensors (Basel). 2025 Feb 20;25(5):1302. doi: 10.3390/s25051302.
Multi-Agent Reinforcement Learning (MARL) presents a promising approach for addressing the complexity of Traffic Signal Control (TSC) in urban environments. However, existing platforms for MARL-based TSC research face challenges such as slow simulation speeds and convoluted, difficult-to-maintain codebases. To address these limitations, we introduce PyTSC, a robust and flexible simulation environment that facilitates the training and evaluation of MARL algorithms for TSC. PyTSC integrates multiple simulators, such as SUMO and CityFlow, and offers a streamlined API, enabling researchers to explore a broad spectrum of MARL approaches efficiently. PyTSC accelerates experimentation and provides new opportunities for advancing intelligent traffic management systems in real-world applications.
多智能体强化学习(MARL)为解决城市环境中交通信号控制(TSC)的复杂性提供了一种很有前景的方法。然而,现有的基于MARL的TSC研究平台面临着诸如模拟速度慢以及代码库复杂、难以维护等挑战。为了解决这些限制,我们引入了PyTSC,这是一个强大且灵活的模拟环境,便于对用于TSC的MARL算法进行训练和评估。PyTSC集成了多个模拟器,如SUMO和CityFlow,并提供了一个简化的应用程序编程接口(API),使研究人员能够高效地探索广泛的MARL方法。PyTSC加快了实验速度,并为在实际应用中推进智能交通管理系统提供了新的机会。