Suppr超能文献

一种基于有向应用程序编程接口调用关系的恶意软件分类方法。

A malware classification method based on directed API call relationships.

作者信息

Ma Cuihua, Li Zhenwan, Long Haixia, Bilal Anas, Liu Xiaowen

机构信息

College of Information Science Technology, Hainan Normal University, Haikou, Hainan, China.

Hainan Engineering Research Center for Extended Reality and Digital Intelligent Education, Haikou, Hainan, China.

出版信息

PLoS One. 2025 Mar 17;20(3):e0299706. doi: 10.1371/journal.pone.0299706. eCollection 2025.

Abstract

In response to the growing complexity of network threats, researchers are increasingly turning to machine learning and deep learning techniques to develop advanced models for malware detection. Many existing methods that utilize Application Programming Interface (API) sequence instructions for malware classification often overlook the structural information inherent in these sequences. While some approaches consider the structure of API calls, they typically rely on the Graph Convolutional Network (GCN) framework, which tends to neglect the sequential nature of API interactions. To address these limitations, we propose a novel malware classification method that leverages the directed relationships within API sequences. Our approach models each API sequence as a directed graph, incorporating node attributes, structural information, and directional relationships. To effectively capture these features, we introduce First-order and Second-order Graph Convolutional Networks (FSGCN) to approximate the operations of a directed graph convolutional network (DGCN). The resulting directed graph embeddings from the FSGCN are then transformed into grayscale images and classified using a Convolutional Neural Network (CNN). Additionally, to mitigate the effects of imbalanced datasets, we employ the Synthetic Minority Over-sampling Technique (SMOTE), ensuring that underrepresented classes receive adequate attention during training. Our method has been rigorously evaluated through extensive experiments on two real-world malware datasets. The results demonstrate the effectiveness and superiority of our approach compared to traditional and graph-based malware classification techniques.

摘要

针对网络威胁日益复杂的情况,研究人员越来越多地转向机器学习和深度学习技术,以开发用于恶意软件检测的先进模型。许多利用应用程序编程接口(API)序列指令进行恶意软件分类的现有方法,往往忽略了这些序列中固有的结构信息。虽然一些方法考虑了API调用的结构,但它们通常依赖于图卷积网络(GCN)框架,而该框架往往忽略了API交互的顺序性质。为了解决这些局限性,我们提出了一种新颖的恶意软件分类方法,该方法利用API序列中的定向关系。我们的方法将每个API序列建模为一个有向图,纳入节点属性、结构信息和定向关系。为了有效地捕捉这些特征,我们引入一阶和二阶图卷积网络(FSGCN)来近似有向图卷积网络(DGCN)的操作。然后,将FSGCN生成的有向图嵌入转换为灰度图像,并使用卷积神经网络(CNN)进行分类。此外,为了减轻不平衡数据集的影响,我们采用合成少数类过采样技术(SMOTE),确保在训练过程中代表性不足的类别得到充分关注。我们的方法已经通过在两个真实世界的恶意软件数据集上进行的广泛实验得到了严格评估。结果表明,与传统的和基于图的恶意软件分类技术相比,我们的方法具有有效性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8020/11913307/41075793af8b/pone.0299706.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验