Suppr超能文献

利用共振拉曼光谱法测定细菌视紫红质中视网膜发色团的结构。

Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.

作者信息

Smith S O, Lugtenburg J, Mathies R A

出版信息

J Membr Biol. 1985;85(2):95-109. doi: 10.1007/BF01871263.

Abstract

The analysis of the vibrational spectrum of the retinal chromophore in bacteriorhodopsin with isotopic derivatives provides a powerful "structural dictionary" for the translation of vibrational frequencies and intensities into structural information. Of importance for the proton-pumping mechanism is the unambiguous determination of the configuration about the C13=C14 and C=N bonds, and the protonation state of the Schiff base nitrogen. Vibrational studies have shown that in light-adapted BR568 the Schiff base nitrogen is protonated and both the C13=C14 and C=N bonds are in a trans geometry. The formation of K625 involves the photochemical isomerization about only the C13=C14 bond which displaces the Schiff base proton into a different protein environment. Subsequent Schiff base deprotonation produces the M412 intermediate. Thermal reisomerization of the C13=C14 bond and reprotonation of the Schiff base occur in the M412------O640 transition, resetting the proton-pumping mechanism. The vibrational spectra can also be used to examine the conformation about the C--C single bonds. The frequency of the C14--C15 stretching vibration in BR568, K625, L550 and O640 argues that the C14--C15 conformation in these intermediates is s-trans. Conformational distortions of the chromophore have been identified in K625 and O640 through the observation of intense hydrogen out-of-plane wagging vibrations in the Raman spectra (see Fig. 2). These two intermediates are the direct products of chromophore isomerization. Thus it appears that following isomerization in a tight protein binding pocket, the chromophore cannot easily relax to a planar geometry. The analogous observation of intense hydrogen out-of-plane modes in the primary photoproduct in vision (Eyring et al., 1982) suggests that this may be a general phenomenon in protein-bound isomerizations. Future resonance Raman studies should provide even more details on how bacterio-opsin and retinal act in concert to produce an efficient light-energy convertor. Important unresolved questions involve the mechanism by which the protein catalyzes deprotonation of the L550 intermediate and the mechanism of the thermal conversion of M412 back to BR568. Also, it has been shown that under conditions of high ionic strength and/or low light intensity two protons are pumped per photocycle (Kuschmitz & Hess, 1981). How might this be accomplished?(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

用同位素衍生物分析细菌视紫红质中视黄醛发色团的振动光谱,为将振动频率和强度转化为结构信息提供了一个强大的“结构字典”。对于质子泵浦机制而言,明确确定C13 = C14和C = N键的构型以及席夫碱氮的质子化状态至关重要。振动研究表明,在光适应的BR568中,席夫碱氮被质子化,且C13 = C14和C = N键均处于反式构型。K625的形成仅涉及C13 = C14键的光化学异构化,该异构化将席夫碱质子转移到不同的蛋白质环境中。随后席夫碱去质子化产生M412中间体。在M412向O640的转变过程中,C13 = C14键发生热异构化,席夫碱重新质子化,从而重置质子泵浦机制。振动光谱还可用于研究C - C单键的构象。BR568、K625、L550和O640中C14 - C15伸缩振动的频率表明,这些中间体中C14 - C15的构象为反式。通过拉曼光谱中强烈的氢面外摇摆振动的观察,已在K625和O640中鉴定出发色团的构象畸变(见图2)。这两种中间体是发色团异构化的直接产物。因此,在紧密的蛋白质结合口袋中异构化后,发色团似乎不易松弛到平面几何结构。在视觉中的初级光产物中类似地观察到强烈的氢面外模式(Eyring等人,1982)表明,这可能是蛋白质结合异构化中的普遍现象。未来的共振拉曼研究应能提供更多关于细菌视紫红质和视黄醛如何协同作用以产生高效光能转换器的细节。重要的未解决问题包括蛋白质催化L550中间体去质子化的机制以及M412热转化回BR568的机制。此外,已表明在高离子强度和/或低光强度条件下,每个光循环泵浦两个质子(Kuschmitz和Hess,1981)。这是如何实现的呢?(摘要截取自400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验