Stollmayer Róbert, Güven Selda, Heidt Christian Marcel, Schlamp Kai, Kaposi Pál Novák, von Stackelberg Oyunbileg, Kauczor Hans-Ulrich, Klauss Miriam, Mayer Philipp
Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany.
Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary.
Cancer Imaging. 2025 Mar 17;25(1):36. doi: 10.1186/s40644-025-00844-6.
Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interpretation but is rather complex and time-consuming. These limitations could potentially be alleviated using recent deep learning-based segmentation and classification methods such as nnU-Net. The study aims to create and evaluate an automatic segmentation model for HCC risk assessment, according to LI-RADS v2018 using nnU-Net.
For this single-center retrospective study, 602 patients at risk for HCC were included, who had dynamic EOB-MRI examinations between 05/2005 and 09/2022, containing ≥ LR-3 lesion(s). Manual lesion segmentations in semantic segmentation masks as LR-3, LR-4, LR-5 or LR-M served as ground truth. A set of U-Net models with 14 input channels was trained using the nnU-Net framework for automatic segmentation. Lesion detection, LI-RADS classification, and instance segmentation metrics were calculated by post-processing the semantic segmentation outputs of the final model ensemble. For the external evaluation, a modified version of the LiverHccSeg dataset was used.
The final training/internal test/external test cohorts included 383/219/16 patients. In the three cohorts, LI-RADS lesions (≥ LR-3 and LR-M) ≥ 10 mm were detected with sensitivities of 0.41-0.85/0.40-0.90/0.83 (LR-5: 0.85/0.90/0.83) and positive predictive values of 0.70-0.94/0.67-0.88/0.90 (LR-5: 0.94/0.88/0.90). F1 scores for LI-RADS classification of detected lesions ranged between 0.48-0.69/0.47-0.74/0.84 (LR-5: 0.69/0.74/0.84). Median per lesion Sørensen-Dice coefficients were between 0.61-0.74/0.52-0.77/0.84 (LR-5: 0.74/0.77/0.84).
Deep learning-based HCC risk assessment according to LI-RADS can be implemented as automatically generated tumor risk maps using out-of-the-box image segmentation tools with high detection performance for LR-5 lesions. Before translation into clinical practice, further improvements in automatic LI-RADS classification, for example through large multi-center studies, would be desirable.
肝细胞癌(HCC)常采用钆塞酸二钠增强磁共振成像(EOB-MRI)进行诊断。根据肝脏影像报告和数据系统(LI-RADS)进行标准化报告可改善钆增强MRI的解读,但相当复杂且耗时。使用诸如nnU-Net等基于深度学习的最新分割和分类方法可能会缓解这些局限性。本研究旨在使用nnU-Net创建并评估一个根据LI-RADS v2018进行HCC风险评估的自动分割模型。
对于这项单中心回顾性研究,纳入了602例有HCC风险的患者,他们在2005年5月至2022年9月期间接受了动态EOB-MRI检查,且含有≥1个LR-3类病变。在语义分割掩码中手动将病变分割为LR-3、LR-4、LR-5或LR-M作为真值。使用nnU-Net框架训练一组具有14个输入通道的U-Net模型用于自动分割。通过对最终模型集成的语义分割输出进行后处理来计算病变检测、LI-RADS分类和实例分割指标。对于外部评估,使用了LiverHccSeg数据集的修改版本。
最终的训练/内部测试/外部测试队列分别包括383/219/16例患者。在这三个队列中,检测到的≥10 mm的LI-RADS病变(≥LR-3和LR-M)的敏感性为0.41 - 0.85/0.40 - 0.90/0.83(LR-5:0.85/0.90/0.83),阳性预测值为0.70 - 0.94/0.67 - 0.88/0.90(LR-5:0.94/0.88/0.90)。检测到的病变的LI-RADS分类的F1分数在0.48 - 0.69/0.47 - 0.74/0.84之间(LR-5:0.69/0.74/0.84)。每个病变的索伦森-迪赛系数中位数在0.61 - 0.74/0.52 - 0.77/0.84之间(LR-5:0.74/0.77/0.84)。
根据LI-RADS基于深度学习的HCC风险评估可以使用开箱即用的图像分割工具实现为自动生成的肿瘤风险图,对LR-5病变具有较高的检测性能。在转化为临床实践之前,例如通过大型多中心研究进一步改进自动LI-RADS分类是可取的。