Hao Wenyu, Du Zongliang, Hou Xiuquan, Guo Yilin, Liu Chang, Zhang Weisheng, Gao Huajian, Guo Xu
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China.
Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
Natl Sci Rev. 2025 Feb 20;12(4):nwaf053. doi: 10.1093/nsr/nwaf053. eCollection 2025 Apr.
The reciprocal mapping between the geometry and properties of a unit cell is crucial for the intelligent and inverse design of advanced materials and structural systems. Beyond classical homogenization-based numerical methods, this paper presents an efficient and accurate mapping between the geometry and properties of a class of unit cells described by moving morphable components, achieved via a graph convolutional neural network. This leads to a structural genome database (SGD) approach for the intelligent design of mechanical metamaterials. Using the SGD approach, metamaterials exhibiting the Hashin-Shtrikman upper bound of bulk modulus, auxetic behavior and the unimodal property have been created, with design efficiency improved by 3-4 orders of magnitude. Additionally, transfer learning and a small amount of training data allow the SGD to predict non-local behaviors beyond a unit cell, such as optimized unit cells with critical buckling strength enhanced by nearly 200% and a bandgap metamaterial with a relative bandgap width of 51%. Experimentally validated optimized metamaterials demonstrate auxetic behavior and superior buckling resistance. The proposed SGD approach holds promise for the advanced design of multi-scale and multi-physics systems.
晶胞几何结构与性能之间的相互映射对于先进材料和结构系统的智能与逆向设计至关重要。除了基于经典均匀化的数值方法外,本文还提出了一种高效且准确的映射方法,该方法通过图卷积神经网络实现了由移动可变组件描述的一类晶胞的几何结构与性能之间的映射。这引出了一种用于机械超材料智能设计的结构基因组数据库(SGD)方法。使用SGD方法,已经创建出了具有哈辛 - 什特里克曼体积模量上限、负泊松比行为和单峰特性的超材料,设计效率提高了3 - 4个数量级。此外,迁移学习和少量训练数据使SGD能够预测晶胞之外的非局部行为,例如临界屈曲强度提高近200%的优化晶胞以及相对带隙宽度为51%的带隙超材料。经实验验证的优化超材料展现出负泊松比行为和卓越的抗屈曲性能。所提出的SGD方法在多尺度和多物理系统的先进设计方面具有广阔前景。