Bondoc-Naumovitz Karen Grace, Crosato Emanuele, Wan Kirsty Y
Living Systems Institute, University of Exeter, Exeter, EX4 4QD, United Kingdom.
Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, United Kingdom.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2426910122. doi: 10.1073/pnas.2426910122. Epub 2025 Mar 18.
Diatoms, a highly successful group of photosynthetic algae, contribute to a quarter of global primary production. Many species are motile, despite having no appendages and a completely rigid cell body. Cells move to seek out nutrients, locate mating partners, and undergo vertical migration. To explore the natural diversity of diatom motility, we perform a comparative study across five common biofilm-forming species. Combining morphological measurements with high-resolution cell tracking, we establish how gliding movements relate to the morphology of the raphe-a specialized slit in the cell wall responsible for motility generation. Our detailed analyses reveal that cells exhibit a rich but species-dependent phenotype, switching stochastically between four stereotyped motility states. We model this behavior and use stochastic simulations to predict how heterogeneity in microscale navigation patterns leads to differences in long-time diffusivity and dispersal. In a representative species, we extend these findings to quantify diatom gliding in complex, naturalistic 3D environments, suggesting that cells may exploit these distinct motility signatures to achieve niche segregation in nature.
硅藻是一类非常成功的光合藻类,贡献了全球初级生产力的四分之一。许多硅藻物种虽然没有附属物且细胞体完全刚性,但仍具有运动能力。细胞通过移动来寻找营养物质、定位交配伙伴并进行垂直迁移。为了探索硅藻运动能力的自然多样性,我们对五个常见的形成生物膜的物种进行了比较研究。通过将形态测量与高分辨率细胞追踪相结合,我们确定了滑动运动与缝裂——细胞壁上负责产生运动能力的特殊裂缝——形态之间的关系。我们的详细分析表明,细胞表现出丰富但依赖物种的表型,在四种定型的运动状态之间随机切换。我们对这种行为进行建模,并使用随机模拟来预测微观尺度导航模式的异质性如何导致长时间扩散率和扩散的差异。在一个具有代表性的物种中,我们扩展了这些发现,以量化硅藻在复杂的自然主义三维环境中的滑动,这表明细胞可能利用这些独特的运动特征在自然界中实现生态位分离。