Suppr超能文献

基于强化学习的气候变化适应自适应策略:在沿海洪水风险管理中的应用

Reinforcement learning-based adaptive strategies for climate change adaptation: An application for coastal flood risk management.

作者信息

Feng Kairui, Lin Ning, Kopp Robert E, Xian Siyuan, Oppenheimer Michael

机构信息

National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai 201210, China.

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544.

出版信息

Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2402826122. doi: 10.1073/pnas.2402826122. Epub 2025 Mar 18.

Abstract

Conventional computational models of climate adaptation frameworks inadequately consider decision-makers' capacity to learn, update, and improve decisions. Here, we investigate the potential of reinforcement learning (RL), a machine learning technique that efficaciously acquires knowledge from the environment and systematically optimizes dynamic decisions, in modeling and informing adaptive climate decision-making. We consider coastal flood risk mitigations for Manhattan, New York City, USA (NYC), illustrating the benefit of continuously incorporating observations of sea-level rise into systematic designs of adaptive strategies. We find that when designing adaptive seawalls to protect NYC, the RL-derived strategy significantly reduces the expected net cost by 6 to 36% under the moderate emissions scenario SSP2-4.5 (9 to 77% under the high emissions scenario SSP5-8.5), compared to conventional methods. When considering multiple adaptive policies, including accomodation and retreat as well as protection, the RL approach leads to a further 5% (15%) cost reduction, showing RL's flexibility in coordinatively addressing complex policy design problems. RL also outperforms conventional methods in controlling tail risk (i.e., low probability, high impact outcomes) and in avoiding losses induced by misinformation about the climate state (e.g., deep uncertainty), demonstrating the importance of systematic learning and updating in addressing extremes and uncertainties related to climate adaptation.

摘要

传统的气候适应框架计算模型没有充分考虑决策者学习、更新和改进决策的能力。在此,我们研究强化学习(RL)的潜力,强化学习是一种机器学习技术,能有效地从环境中获取知识并系统地优化动态决策,用于模拟和指导适应性气候决策。我们考虑了美国纽约市曼哈顿的沿海洪水风险缓解措施,说明了将海平面上升观测结果持续纳入适应性策略系统设计的好处。我们发现,在设计保护纽约市的适应性海堤时,与传统方法相比,在中等排放情景SSP2 - 4.5下,基于强化学习得出的策略可将预期净成本显著降低6%至36%(在高排放情景SSP5 - 8.5下降低9%至77%)。当考虑多种适应性政策,包括容纳、撤退以及保护时,强化学习方法可进一步降低成本5%(15%),显示出强化学习在协同解决复杂政策设计问题方面的灵活性。强化学习在控制尾部风险(即低概率、高影响结果)以及避免因气候状态错误信息(如深度不确定性)导致的损失方面也优于传统方法,证明了系统学习和更新在应对与气候适应相关的极端情况和不确定性方面的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a980/11962498/b6e0a0d6c137/pnas.2402826122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验