Agrawal Suyash, Rahn Christopher, Cheng Bo
Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA.
J R Soc Interface. 2025 Mar;22(224):20240660. doi: 10.1098/rsif.2024.0660. Epub 2025 Mar 19.
Natural fliers with flapping wings face the dual challenges of energy efficiency and active control of wing motion for achieving diverse modes of flight. It is hypothesized that flapping-wing systems use resonance to improve muscle mechanical output energy efficiency, a principle often followed in bioinspired flapping-wing robots. However, resonance can limit the degree of active control, a trade-off rooted in the dynamics of wing motor systems and can be potentially reflected in muscle work loops. To systematically investigate how energy efficiency trades off with active control of wingbeat frequency and amplitude, here we developed a parsimonious model of the wing motor system with either synchronous or asynchronous power muscles. We then non-dimensionalized the model and performed simulations to examine model characteristics as functions of Weis-Fogh number and dimensionless flapping frequency. For synchronous power muscles, our model predicts that energy efficiency trades off with frequency control rather than amplitude control at high Weis-Fogh numbers; however, no such trade-off was found for models with asynchronous power muscles. The work loops alone are insufficient to fully capture wing motor characteristics, and therefore fail to directly reflect the trade-offs. Finally, using simulation results, we predict that natural fliers function at Weis-Fogh numbers close to 1.
具有扑翼的天然飞行者面临着能源效率和主动控制翅膀运动以实现多种飞行模式的双重挑战。据推测,扑翼系统利用共振来提高肌肉机械输出的能源效率,这是受生物启发的扑翼机器人经常遵循的一个原理。然而,共振会限制主动控制的程度,这种权衡源于翅膀运动系统的动力学,并且可能在肌肉功循环中得到体现。为了系统地研究能源效率如何与翅膀拍动频率和幅度的主动控制进行权衡,我们在此开发了一个具有同步或异步动力肌肉的翅膀运动系统的简约模型。然后我们对模型进行无量纲化处理,并进行模拟以检验模型特性作为韦斯 - 福格数和无量纲拍动频率的函数。对于同步动力肌肉,我们的模型预测,在高韦斯 - 福格数下,能源效率与频率控制而非幅度控制进行权衡;然而,对于具有异步动力肌肉的模型,未发现这种权衡。仅功循环不足以完全捕捉翅膀运动系统的特性,因此无法直接反映这种权衡。最后,利用模拟结果,我们预测天然飞行者在接近1的韦斯 - 福格数下发挥作用。