Kanning Jos P, Wang Junfeng, Abtahi Shahab, Geerlings Mirjam I, Ruigrok Ynte M
Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Sci Rep. 2025 Mar 18;15(1):9256. doi: 10.1038/s41598-025-88826-3.
Aneurysmal subarachnoid haemorrhage (aSAH) is a type of stroke with high mortality and morbidity. This study aimed to identify novel aSAH risk factors by combining machine learning (ML) and traditional statistical methods. Using the UK Biobank, we identified aSAH cases via hospital-based ICD codes and analysed 618 baseline variables covering demographics, lifestyle, medical history, and physical measurements. The CatBoost ML algorithm and Shapley Additive Explanations (SHAP) identified the top 25 variables most influential in predicting aSAH. Logistic regression further described these variables while adjusting for established aSAH risk factors. Among 501,847 participants, 893 aSAH cases were identified. ML identified 214 variables with non-zero SHAP values. Logistic regression of the top 25 variables revealed four potential novel aSAH risk factors. Increased aSAH risk was associated with mean sphered cell volume (OR 1.02, 95% CI 1.00-1.03) and tea intake (OR 1.03, 95% CI 1.01-1.05). Decreased aSAH risk was associated with peak expiratory flow (OR 0.80, 95% CI 0.66-0.96), and haematocrit percentage (OR 0.97, 95% CI 0.95-1.00). Future research should validate these findings and explore the potential non-linear relationships and interactions indicated by the ML models.
动脉瘤性蛛网膜下腔出血(aSAH)是一种具有高死亡率和高发病率的中风类型。本研究旨在通过结合机器学习(ML)和传统统计方法来识别新的aSAH风险因素。利用英国生物银行,我们通过基于医院的国际疾病分类代码识别出aSAH病例,并分析了618个涵盖人口统计学、生活方式、病史和身体测量的基线变量。CatBoost ML算法和Shapley加法解释(SHAP)确定了预测aSAH最具影响力的前25个变量。逻辑回归在调整既定的aSAH风险因素的同时进一步描述了这些变量。在501,847名参与者中,识别出893例aSAH病例。ML识别出214个具有非零SHAP值的变量。对前25个变量进行逻辑回归分析发现了四个潜在的新的aSAH风险因素。aSAH风险增加与平均球形细胞体积(OR 1.02,95% CI 1.00 - 1.03)和茶摄入量(OR 1.03,95% CI 1.01 - 1.05)相关。aSAH风险降低与呼气峰值流速(OR 0.80,95% CI 0.66 - 0.96)和血细胞比容百分比(OR 0.97,95% CI 0.95 - 1.00)相关。未来的研究应验证这些发现,并探索ML模型所表明的潜在非线性关系和相互作用。