Song Hongping, Huang Yourui, Han Tao, Xu Shanyong, Liu Quanzeng
Anhui University of Science and Technology, Huainan, 232001, China.
West Anhui University, Lu'an, 237012, China.
Plant Methods. 2025 Mar 18;21(1):39. doi: 10.1186/s13007-025-01362-z.
Rapid and accurate identification of soybean leaf diseases is crucial for optimizing crop health and yield. We propose a cell P system with membrane division and dissolution rules (DDC-P system) for soybean leaf disease identification. Among them, the designed Efficient feature attention (EFA) and the lightweight sandglass structure and efficient feature attention (SGEFA) can focus on disease-specific information while reducing environmental interference. A fuzzy controller was developed to manage the division and dissolution of SGEFA membranes, allowing for adaptive adjustments to the model structure and avoiding redundancy. Experimental results on the homemade soybean disease dataset show that the DDC-P system achieves a recognition rate of 98.43% with an F1 score of 0.9874, while the model size is only 1.41 MB. On the public dataset, the DDC-P system achieves an accuracy of 94.40% with an F1 score of 0.9425. The average recognition time on the edge device is 0.042857 s, with an FPS of 23.3. These outstanding results demonstrate that the DDC-P system not only excels in recognition and generalization but is also ideally suited for deployment on edge devices, revolutionizing the approach to soybean leaf disease management.
快速准确地识别大豆叶部病害对于优化作物健康状况和产量至关重要。我们提出了一种具有膜分裂和溶解规则的细胞P系统(DDC-P系统)用于大豆叶部病害识别。其中,所设计的高效特征注意力(EFA)以及轻量级沙漏结构与高效特征注意力(SGEFA)能够在减少环境干扰的同时聚焦于病害特异性信息。开发了一种模糊控制器来管理SGEFA膜的分裂和溶解,从而实现对模型结构的自适应调整并避免冗余。在自制的大豆病害数据集上的实验结果表明,DDC-P系统的识别率达到98.43%,F1分数为0.9874,而模型大小仅为1.41MB。在公共数据集上,DDC-P系统的准确率为94.40%,F1分数为0.9425。在边缘设备上的平均识别时间为0.042857秒,帧率为23.3。这些出色的结果表明,DDC-P系统不仅在识别和泛化方面表现出色,而且非常适合在边缘设备上部署,彻底改变了大豆叶部病害管理的方法。