Suppr超能文献

用于大豆病害识别的超图细胞膜计算网络模型。

A hypergraph cell membrane computing network model for soybean disease identification.

机构信息

Anhui University of Science and Technology, Huainan, 232001, China.

出版信息

Sci Rep. 2024 Nov 28;14(1):29637. doi: 10.1038/s41598-024-81325-x.

Abstract

Accurate identification of soybean leaf diseases is essential to improving quality and yield. Aiming at the problem of insufficient data volume that may lead to model overfitting and low recognition ability, this paper proposes a hypergraph cell membrane computing network model for soybean disease identification (HcmcNet). The main components of HcmcNet are the pyramid convolutional feature extraction membrane, the ordinary feature extraction membrane, the U-type feature extraction membrane, and the dynamic attention membrane. The three parallel feature extraction membranes are designed to improve the model's ability to capture disease features. The dynamic attention membrane aims to enhance the model's expressiveness and performance by dynamically adjusting the attentional weights of the three feature extraction membranes to fuse the disease features effectively. Soybean leaf disease images were used to create the dataset and conduct experiments. The experimental results show that HcmcNet achieves 98% accuracy on the test set. Compared with classical models, HcmcNet shows obvious advantages in several evaluation metrics. We also conducted experiments on public datasets. The results show that it is feasible to use HcmcNet for soybean leaf disease recognition, and HcmcNet has higher classification accuracy and stronger generalization ability on small sample datasets. HcmcNet has great application prospects in soybean leaf disease recognition.

摘要

准确识别大豆叶片病害对于提高产量和质量至关重要。针对可能导致模型过拟合和识别能力低下的数据集量不足问题,本文提出了一种用于大豆病害识别的超图细胞膜计算网络模型(HcmcNet)。HcmcNet 的主要组成部分是金字塔卷积特征提取膜、普通特征提取膜、U 型特征提取膜和动态注意力膜。三个并行的特征提取膜旨在提高模型捕获病害特征的能力。动态注意力膜旨在通过动态调整三个特征提取膜的注意力权重,有效融合病害特征,从而增强模型的表达能力和性能。使用大豆叶片病害图像创建数据集并进行实验。实验结果表明,HcmcNet 在测试集上的准确率达到 98%。与经典模型相比,HcmcNet 在几个评估指标上表现出明显的优势。我们还在公共数据集上进行了实验。结果表明,HcmcNet 可用于大豆叶片病害识别,在小样本数据集上具有更高的分类准确率和更强的泛化能力。HcmcNet 在大豆叶片病害识别中有很大的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a1/11604938/bd5ef3e92463/41598_2024_81325_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验