Xie Xin-Tian, Guan Tong, Yang Zheng-Xin, Shang Cheng, Liu Zhi-Pan
State Key Laboratory of Porous Materials for Separation and Conversion, Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
State Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
J Chem Theory Comput. 2025 Apr 8;21(7):3576-3586. doi: 10.1021/acs.jctc.5c00051. Epub 2025 Mar 19.
Machine learning potential (MLP), by learning global potential energy surfaces (PES), has demonstrated its great value in finding unknown structures and reactions via global PES exploration. Due to the diversity and complexity of the global PES data set, an outstanding challenge emerges in achieving PES high accuracy (e.g., error <1 meV/atom), which is essential to determine the thermodynamics and kinetics properties. Here, we develop a lightweight fine-tuning MLP architecture, namely, AtomFT, that can explore PES globally and simultaneously describe the PES of a target system accurately. The AtomFT potential takes the pretrained many-body function corrected global neural network (MBNN) potential as the basis potential, exploits and iteratively updates the atomic features from the pretrained MBNN model, and finally generates the fine-tuning energy contribution. By implementing the AtomFT architecture on the commonly available CPU platform, we show the high efficiency of AtomFT potential in both training and inference and demonstrate the high performance in challenging PES problems, including the oxides with low defect content, molecular reactions, and molecular crystals─in all systems, the AtomFT potentials enhance significantly the PES prediction accuracy to 1 meV/atom.
通过学习全局势能面(PES),机器学习势能(MLP)已在通过全局PES探索来寻找未知结构和反应方面展现出巨大价值。由于全局PES数据集的多样性和复杂性,在实现PES高精度(例如,误差<1毫电子伏特/原子)方面出现了一个突出挑战,而这对于确定热力学和动力学性质至关重要。在此,我们开发了一种轻量级微调MLP架构,即AtomFT,它可以全局探索PES并同时准确描述目标系统的PES。AtomFT势能以预训练的多体函数校正全局神经网络(MBNN)势能作为基础势能,利用并迭代更新来自预训练MBNN模型的原子特征,最终生成微调能量贡献。通过在常用的CPU平台上实现AtomFT架构,我们展示了AtomFT势能在训练和推理方面的高效率,并证明了其在具有挑战性的PES问题中的高性能,包括低缺陷含量的氧化物、分子反应和分子晶体——在所有系统中,AtomFT势能都将PES预测精度显著提高到1毫电子伏特/原子。