Dass Mihir, Gür Fatih N, Kołątaj Karol, Urban Maximilian J, Liedl Tim
Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
J Phys Chem C Nanomater Interfaces. 2021 Mar 25;125(11):5969-5981. doi: 10.1021/acs.jpcc.0c11238. Epub 2021 Feb 25.
The reliable programmability of DNA origami makes it an extremely attractive tool for bottom-up self-assembly of complex nanostructures. Utilizing this property for the tuned arrangement of plasmonic nanoparticles holds great promise particularly in the field of biosensing. Plasmonic particles are beneficial for sensing in multiple ways, from enhancing fluorescence to enabling a visualization of the nanoscale dynamic actuation via chiral rearrangements. In this Perspective, we discuss the recent developments and possible future directions of DNA origami-enabled plasmonic sensing systems. We start by discussing recent advancements in the area of fluorescence-based plasmonic sensing using DNA origami. We then move on to surface-enhanced Raman spectroscopy sensors followed by chiral sensing, both utilizing DNA origami nanostructures. We conclude by providing our own views on the future prospects for plasmonic biosensors enabled using DNA origami.
DNA折纸的可靠可编程性使其成为用于复杂纳米结构自下而上自组装的极具吸引力的工具。利用这一特性对等离子体纳米颗粒进行调谐排列具有巨大潜力,尤其是在生物传感领域。等离子体颗粒在多个方面有利于传感,从增强荧光到通过手性重排实现纳米级动态驱动的可视化。在这篇综述中,我们讨论了基于DNA折纸的等离子体传感系统的最新进展和可能的未来发展方向。我们首先讨论了使用DNA折纸的基于荧光的等离子体传感领域的最新进展。然后我们转向表面增强拉曼光谱传感器,接着是手性传感,两者都利用了DNA折纸纳米结构。最后,我们对使用DNA折纸的等离子体生物传感器的未来前景发表了自己的看法。