Suppr超能文献

AlgaeOrtho,一种用于处理藻类直系同源基因推断结果的生物信息学工具。

AlgaeOrtho, a bioinformatics tool for processing ortholog inference results in algae.

作者信息

LaPorte Mary-Francis, Arora Neha, Clark Struan, Nag Ambarish

机构信息

Department of Plant Sciences, University of California, Davis, Davis, CA, United States.

Department of Biology, Skidmore College, Saratoga Springs, NY, United States.

出版信息

Front Microbiol. 2025 Mar 4;16:1541898. doi: 10.3389/fmicb.2025.1541898. eCollection 2025.

Abstract

INTRODUCTION

Microalgae constitute a prominent feedstock for producing biofuels and biochemicals by virtue of their prolific reproduction, high bioproduct accumulation, and the ability to grow in brackish and saline water. However, naturally occurring wild type algal strains are rarely optimal for industrial use; therefore, bioengineering of algae is necessary to generate superior performing strains that can address production challenges in industrial settings, particularly the bioenergy and bioproduct sectors. One of the crucial steps in this process is deciding on a bioengineering target: namely, which gene/protein to differentially express. These targets are often orthologs which are defined as genes/proteins originating from a common ancestor in divergent species. Although bioinformatics tools for the identification of protein orthologs already exist, processing the output from such tools is nontrivial, especially for a researcher with little or no bioinformatics experience.

METHODS

The present study introduces AlgaeOrtho, a user-friendly tool that builds upon the SonicParanoid orthology inference tool (based on an algorithm that identifies potential protein orthologs based on amino acid sequences) and the PhycoCosm database from JGI (Joint Genome Institute) to help researchers identify orthologs of their proteins of interest in multiple diverse algal species.

RESULTS

The output of this application includes a table of the putative orthologs of their protein of interest, a heatmap showing sequence similarity (%), and an unrooted tree of the putative protein orthologs. Notably, the tool would be instrumental in identifying novel bioengineering targets in different algal strains, including targets in not-fully annotated algal species, since it does not depend on existing protein annotations. We tested AlgaeOrtho using three case studies, for which orthologs of proteins relevant to bioengineering targets, were identified from diverse algal species, demonstrating its ease of use and utility for bioengineering researchers.

DISCUSSION

This tool is unique in the protein ortholog identification space as it can visualize putative orthologs, as desired by the user, across several algal species.

摘要

引言

微藻凭借其繁殖能力强、生物产品积累量高以及能在微咸水和盐水中生长的特性,成为生产生物燃料和生化制品的重要原料。然而,天然存在的野生型藻类菌株很少能达到工业应用的最佳状态;因此,藻类的生物工程改造对于培育性能更优的菌株至关重要,这些菌株能够应对工业环境中的生产挑战,特别是在生物能源和生物产品领域。这一过程中的关键步骤之一是确定生物工程目标:即决定差异表达哪个基因/蛋白质。这些目标通常是直系同源物,被定义为源自不同物种共同祖先的基因/蛋白质。尽管已经存在用于识别蛋白质直系同源物的生物信息学工具,但处理这些工具的输出并非易事,尤其是对于几乎没有或没有生物信息学经验的研究人员而言。

方法

本研究引入了AlgaeOrtho,这是一种用户友好型工具,它基于SonicParanoid直系同源性推断工具(基于一种根据氨基酸序列识别潜在蛋白质直系同源物的算法)和美国能源部联合基因组研究所(JGI)的藻类基因组数据库PhycoCosm构建,以帮助研究人员在多种不同藻类物种中识别他们感兴趣蛋白质的直系同源物。

结果

该应用程序的输出包括其感兴趣蛋白质的推定直系同源物表格、显示序列相似性(%)的热图以及推定蛋白质直系同源物的无根树。值得注意的是,该工具将有助于识别不同藻类菌株中的新型生物工程目标,包括未完全注释的藻类物种中的目标,因为它不依赖于现有的蛋白质注释。我们通过三个案例研究对AlgaeOrtho进行了测试,从不同藻类物种中识别出了与生物工程目标相关蛋白质的直系同源物,证明了其对生物工程研究人员的易用性和实用性。

讨论

该工具在蛋白质直系同源物识别领域独具特色,因为它可以根据用户需求可视化多个藻类物种中的推定直系同源物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4e4/11913701/434b08d8a590/fmicb-16-1541898-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验