Suppr超能文献

在异养条件下过表达内源性 bZIP 转录因子增强 sp. HS2 的脂类生产。

Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in sp. HS2.

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea.

出版信息

J Microbiol Biotechnol. 2020 Oct 28;30(10):1597-1606. doi: 10.4014/jmb.2005.05048.

Abstract

Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRTPCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in sp. HS2 under heterotrophic conditions.

摘要

转录因子工程在调控多个基因方面显示出了在微藻基因工程领域的应用潜力。在这里,我们报告了转录因子工程在 sp. HS2 中的首次应用,该藻被认为具有生产生物燃料和生物制品的潜力。我们在 sp. HS2 中鉴定了七个内源性 bZIP 转录因子,并将它们命名为 HSbZIP1 到 HSbZIP7。我们过表达了 C 型 bZIP 转录因子 HSbZIP1,以期提高脂质产量。异养条件下的表型筛选显示,所有转化株均表现出脂肪酸产量增加。特别是,HSbZIP1 37 和 58 在异养条件下生长第 10 天的脂肪酸甲酯 (FAME) 产量分别达到 859 和 1052 mg/L,分别比 WT 高 74%和 113%。为了阐明改善表型的机制,我们通过转录因子结合位点分析鉴定了候选的 HSbZIP1 调控基因。然后,我们选择了三个参与脂肪酸合成的基因,并通过 qRT-PCR 检测了这些基因的 mRNA 表达水平。结果表明,可能参与脂肪酸合成的 HSbZIP1 调控基因在 HSbZIP1 转化株中上调。总之,我们的结果表明,HSbZIP1 可用于提高 sp. HS2 在异养条件下的脂质产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32f7/9728203/ff33de696b79/JMB-30-10-1597-f1.jpg

相似文献

2
Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina.
Biotechnol Bioeng. 2018 Feb;115(2):331-340. doi: 10.1002/bit.26465. Epub 2017 Nov 3.
6
Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.
Appl Biochem Biotechnol. 2015 Oct;177(3):662-74. doi: 10.1007/s12010-015-1770-4. Epub 2015 Aug 4.
7
Optimization of heterotrophic cultivation of Chlorella sp. for oil production.
Bioresour Technol. 2012 Aug;118:235-42. doi: 10.1016/j.biortech.2012.05.004. Epub 2012 May 9.
8
Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10.
J Biosci Bioeng. 2014 Jul;118(1):72-7. doi: 10.1016/j.jbiosc.2013.12.014. Epub 2014 Jan 31.
10
A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source.
Bioprocess Biosyst Eng. 2020 Dec;43(12):2243-2252. doi: 10.1007/s00449-020-02409-2. Epub 2020 Jul 15.

引用本文的文献

1
Efficient secretory production of recombinant proteins in microalgae using an exogenous signal peptide.
Front Microbiol. 2025 Jun 18;16:1603204. doi: 10.3389/fmicb.2025.1603204. eCollection 2025.
3
AlgaeOrtho, a bioinformatics tool for processing ortholog inference results in algae.
Front Microbiol. 2025 Mar 4;16:1541898. doi: 10.3389/fmicb.2025.1541898. eCollection 2025.
6
Engineering Fatty Acid Biosynthesis in Microalgae: Recent Progress and Perspectives.
Mar Drugs. 2024 May 9;22(5):216. doi: 10.3390/md22050216.
7
Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering.
Life (Basel). 2024 Mar 28;14(4):447. doi: 10.3390/life14040447.
8
Biotechnological Approaches for Biomass and Lipid Production Using Microalgae and Its Future Perspectives.
J Microbiol Biotechnol. 2022 Nov 28;32(11):1357-1372. doi: 10.4014/jmb.2209.09012. Epub 2022 Oct 21.

本文引用的文献

2
Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2.
Bioresour Technol. 2019 Mar;276:110-118. doi: 10.1016/j.biortech.2018.12.111. Epub 2018 Dec 31.
4
Current Bottlenecks and Challenges of the Microalgal Biorefinery.
Trends Biotechnol. 2019 Mar;37(3):242-252. doi: 10.1016/j.tibtech.2018.09.006. Epub 2018 Oct 6.
5
Heterotrophic cultivation of using forest biomass as a feedstock for sustainable biodiesel production.
Biotechnol Biofuels. 2018 Jun 20;11:169. doi: 10.1186/s13068-018-1173-1. eCollection 2018.
6
8
Increased lipid production by heterologous expression of AtWRI1 transcription factor in .
Biotechnol Biofuels. 2017 Oct 10;10:231. doi: 10.1186/s13068-017-0919-5. eCollection 2017.
9
Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina.
Biotechnol Bioeng. 2018 Feb;115(2):331-340. doi: 10.1002/bit.26465. Epub 2017 Nov 3.
10
Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.
Bioresour Technol. 2017 Dec;245(Pt A):162-170. doi: 10.1016/j.biortech.2017.08.113. Epub 2017 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验