Suppr超能文献

基于三维基质硬度的干细胞土壤:三相生物力学结构促进人牙髓干细胞实现牙髓牙本质再生。

Three-dimensional matrix stiffness-based stem cell soil: Tri-phase biomechanical structure promoted human dental pulp stem cells to achieve pulpodentin regeneration.

作者信息

Li Xiujuan, Xia Yijing, Wang Zhiying, Yin Ziruo, Weng Maotao, Tian Feng, Kang Jie, Li Yuanjiao, Ding Peixuan, Liu Xing, Zhao Bin, Wang Lu

机构信息

Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.

Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.

出版信息

Mater Today Bio. 2025 Feb 21;31:101591. doi: 10.1016/j.mtbio.2025.101591. eCollection 2025 Apr.

Abstract

The regeneration of the pulp-dentine complex is characterized by organizational diversity, with both dentine and pulp being essential for regenerating a complete tooth-like structure. Matrix stiffness plays a crucial role in guiding the multi-lineage differentiation of stem cells during the regeneration process. However, human dental pulp stem cell (HDPSCs) differentiation via three-dimensional (3D) matrix stiffness is still ambiguous. This study employed gelatin methacryloyl hydrogels of varying stiffness to investigate their effects on HDPSCs differentiation, and constructing a Tri-Phase Biomechanical Structure. The effects of 3D stiffness on HDPSCs proliferation, morphology, differentiation, and biomineralization were examined. The underlying mechanisms were analyzed by RNA sequencing (RNA-seq). At the same time, the comprehensive effects of 3D matrix stiffness-induced HDPSCs paracrine signals on periapical cells (endothelial cells, macrophages and fibroblasts) were evaluated. In vitro, high stiffness promoted dentin differentiation, medium stiffness supported vascular differentiation, and low stiffness enhanced vascularization of peri-apical cells through paracrine signals. In vivo, treated dentin matrixes implanted in nude mice further confirmed that this Tri-Phase Biomechanical Structure effectively promoted crownward dentin formation, pulp-like regeneration within root canals, and integration with periapical tissues. These findings highlight that understanding HDPSCs responses to 3D matrix stiffness is crucial for guiding targeted, efficient regeneration of a tooth-like pulpodentin complex.

摘要

牙髓-牙本质复合体的再生具有组织多样性的特点,牙本质和牙髓对于再生完整的牙齿样结构均至关重要。基质硬度在再生过程中指导干细胞的多谱系分化方面起着关键作用。然而,人牙髓干细胞(HDPSCs)通过三维(3D)基质硬度进行的分化仍不明确。本研究采用不同硬度的甲基丙烯酰化明胶水凝胶来研究其对HDPSCs分化的影响,并构建三相生物力学结构。研究了3D硬度对HDPSCs增殖、形态、分化和生物矿化的影响。通过RNA测序(RNA-seq)分析其潜在机制。同时,评估了3D基质硬度诱导的HDPSCs旁分泌信号对根尖周细胞(内皮细胞、巨噬细胞和成纤维细胞)的综合影响。在体外,高硬度促进牙本质分化,中等硬度支持血管分化,低硬度通过旁分泌信号增强根尖周细胞的血管生成。在体内,植入裸鼠的处理过的牙本质基质进一步证实,这种三相生物力学结构有效地促进了向冠方的牙本质形成、根管内牙髓样再生以及与根尖周组织的整合。这些发现突出表明,了解HDPSCs对3D基质硬度的反应对于指导靶向、高效地再生牙齿样牙髓-牙本质复合体至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2604/11919457/21e26d3347a9/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验