Suppr超能文献

铁-磁铁矿界面处的表面特征

Complexions at the iron-magnetite interface.

作者信息

Zhou Xuyang, Bienvenu Baptiste, Wu Yuxiang, Kwiatkowski da Silva Alisson, Ophus Colin, Raabe Dierk

机构信息

Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung), Max-Planck-Straße 1, Düsseldorf, Germany.

National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA.

出版信息

Nat Commun. 2025 Mar 19;16(1):2705. doi: 10.1038/s41467-025-58022-y.

Abstract

Synthesizing distinct phases and controlling crystalline defects are key concepts in materials design. These approaches are often decoupled, with the former grounded in equilibrium thermodynamics and the latter in nonequilibrium kinetics. By unifying them through defect phase diagrams, we can apply phase equilibrium models to thermodynamically evaluate defects-including dislocations, grain boundaries, and phase boundaries-establishing a theoretical framework linking material imperfections to properties. Using scanning transmission electron microscopy (STEM) with differential phase contrast (DPC) imaging, we achieve the simultaneous imaging of heavy Fe and light O atoms, precisely mapping the atomic structure and chemical composition at the iron-magnetite (Fe/FeO) interface. We identify a well-ordered two-layer interface-stabilized phase state (referred to as complexion) at the Fe[001]/FeO[001] interface. Using density-functional theory (DFT), we explain the observed complexion and map out various interface-stabilized phases as a function of the O chemical potential. The formation of complexions increases interface adhesion by 20% and alters charge transfer between adjacent materials, impacting transport properties. Our findings highlight the potential of tunable defect-stabilized phase states as a degree of freedom in materials design, enabling optimized corrosion protection, catalysis, and redox-driven phase transitions, with applications in materials sustainability, efficient energy conversion, and green steel production.

摘要

合成不同相并控制晶体缺陷是材料设计中的关键概念。这些方法通常是解耦的,前者基于平衡热力学,后者基于非平衡动力学。通过缺陷相图将它们统一起来,我们可以应用相平衡模型对包括位错、晶界和相界在内的缺陷进行热力学评估,从而建立一个将材料缺陷与性能联系起来的理论框架。使用具有差分相衬(DPC)成像的扫描透射电子显微镜(STEM),我们实现了对重Fe原子和轻O原子的同时成像,精确绘制了铁 - 磁铁矿(Fe/FeO)界面处的原子结构和化学成分。我们在Fe[001]/FeO[001]界面处识别出一种有序的双层界面稳定相态(称为络合物相)。使用密度泛函理论(DFT),我们解释了观察到的络合物相,并绘制出各种界面稳定相作为O化学势的函数。络合物相的形成使界面附着力增加了20%,并改变了相邻材料之间的电荷转移,从而影响传输性能。我们的研究结果突出了可调谐缺陷稳定相态作为材料设计中一个自由度的潜力,可实现优化的腐蚀防护、催化以及氧化还原驱动的相变,在材料可持续性、高效能量转换和绿色钢铁生产等方面具有应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09f4/11923288/7b28cb19761e/41467_2025_58022_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验