Govindarajan Sindhuja Tirumalai, Mamourian Elizabeth, Erus Guray, Abdulkadir Ahmed, Melhem Randa, Doshi Jimit, Pomponio Raymond, Tosun Duygu, Bilgel Murat, An Yang, Sotiras Aristeidis, Marcus Daniel S, LaMontagne Pamela, Benzinger Tammie L S, Espeland Mark A, Masters Colin L, Maruff Paul, Launer Lenore J, Fripp Jurgen, Johnson Sterling C, Morris John C, Albert Marilyn S, Bryan R Nick, Resnick Susan M, Habes Mohamad, Shou Haochang, Wolk David A, Nasrallah Ilya M, Davatzikos Christos
Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA.
Centre for Artificial Intelligence, ZHAW School of Engineering, Winterthur, Switzerland.
Nat Commun. 2025 Mar 19;16(1):2724. doi: 10.1038/s41467-025-57867-7.
Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and validated machine learning models to quantify the distinct spatial patterns of atrophy and white matter hyperintensities related to hypertension, hyperlipidemia, smoking, obesity, and type-2 diabetes mellitus at the patient level. Using harmonized MRI data from 37,096 participants (45-85 years) in a large multinational dataset of 10 cohort studies, we generated five in silico severity markers that: i) outperformed conventional structural MRI markers with a ten-fold increase in effect sizes, ii) captured subtle patterns at sub-clinical CVM stages, iii) were most sensitive in mid-life (45-64 years), iv) were associated with brain beta-amyloid status, and v) showed stronger associations with cognitive performance than diagnostic CVM status. Integrating personalized measurements of CVM-specific brain signatures into phenotypic frameworks could guide early risk detection and stratification in clinical studies.
心血管和代谢共病风险因素(CVM)对脑结构有不同影响并增加痴呆风险,但其特定的磁共振成像特征(MRI)仍未得到充分表征。为解决这一问题,我们开发并验证了机器学习模型,以在患者层面量化与高血压、高脂血症、吸烟、肥胖和2型糖尿病相关的萎缩和白质高信号的不同空间模式。利用来自10项队列研究的大型跨国数据集中37096名参与者(45 - 85岁)的统一MRI数据,我们生成了五个虚拟严重程度标记物,它们:i)效应大小增加了十倍,优于传统结构MRI标记物;ii)在亚临床CVM阶段捕捉到细微模式;iii)在中年(45 - 64岁)时最敏感;iv)与脑β-淀粉样蛋白状态相关;v)与认知表现的关联比诊断CVM状态更强。将CVM特异性脑特征的个性化测量整合到表型框架中,可以指导临床研究中的早期风险检测和分层。