Suppr超能文献

[使用可解释机器学习模型预测心力衰竭合并急性肾损伤患者的重症监护病房死亡率:一项回顾性队列研究]

[Predicting Intensive Care Unit Mortality in Patients With Heart Failure Combined With Acute Kidney Injury Using an Interpretable Machine Learning Model: A Retrospective Cohort Study].

作者信息

Luo Xinyao, Wan Dingyuan, Wang Ke, Li Yupei, Liao Ruoxi, Su Baihai

机构信息

( 610041) Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.

出版信息

Sichuan Da Xue Xue Bao Yi Xue Ban. 2025 Jan 20;56(1):183-190. doi: 10.12182/20250160507.

Abstract

OBJECTIVE

Heart failure (HF) complicated by acute kidney injury (AKI) significantly impacts patient outcomes, and it is crucial to make early predictions of short-term mortality. This study is focused on developing an interpretable machine learning model to enhance early prediction accuracy in such clinical scenarios.

METHODS

This retrospective cohort study utilized data from the Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ, version 2.0) database. Data from the first 24 hours after admission to the ICU were extracted and divided into a training set (70%) and a validation set (30%). We utilized the SHapley Additive exPlanation (SHAP) method to interpret the workings of an extreme gradient boosting (XGBoost) model and identify key prognostic factors. The XGBoost model's predictive ability was evaluated against three other machine learning models using the area under the curve (AUC) metric, and its interpretation was enhanced using the SHAP method.

RESULTS

The study included 8028 patients with HF complicated by AKI. The XGBoost model outperformed the other models, achieving an AUC of 0.93 (95% confidence interval [CI]: 0.78-0.94; accuracy = 0.89), while neural network model showed the worst performance (AUC = 0.79, 95% CI: 0.77-0.82; accuracy = 0.82). Decision curve analysis showed the superior net benefit of the XGBoost model within the 9% to 60% threshold probabilities. SHAP analysis was performed to identify the top 20 predictors, with age (mean SHAP value 1.29) and Glasgow Coma Scale score (mean SHAP value 1.24) emerging as significant factors.

CONCLUSIONS

Our interpretable model offers an enhanced ability to predict mortality risk in HF patients with AKI in ICUs. This model can be used to assist in formulating effective treatment plans and optimizing resource allocation.

摘要

目的

心力衰竭(HF)合并急性肾损伤(AKI)对患者预后有显著影响,早期预测短期死亡率至关重要。本研究旨在开发一种可解释的机器学习模型,以提高此类临床场景中的早期预测准确性。

方法

这项回顾性队列研究利用了重症监护医学信息集市Ⅳ(MIMIC-Ⅳ,版本2.0)数据库中的数据。提取了入住重症监护病房(ICU)后最初24小时的数据,并分为训练集(70%)和验证集(30%)。我们使用SHapley加性解释(SHAP)方法来解释极端梯度提升(XGBoost)模型的工作原理,并确定关键的预后因素。使用曲线下面积(AUC)指标,将XGBoost模型的预测能力与其他三种机器学习模型进行比较,并使用SHAP方法增强其可解释性。

结果

该研究纳入了8028例HF合并AKI的患者。XGBoost模型的表现优于其他模型,AUC为0.93(95%置信区间[CI]:0.78-0.94;准确率=0.89),而神经网络模型表现最差(AUC=0.79,95%CI:0.77-0.82;准确率=0.82)。决策曲线分析显示,在9%至60%的阈值概率范围内,XGBoost模型具有更高的净效益。进行SHAP分析以确定前20个预测因素,年龄(平均SHAP值1.29)和格拉斯哥昏迷量表评分(平均SHAP值1.24)成为显著因素。

结论

我们的可解释模型在预测ICU中AKI的HF患者死亡风险方面具有更强的能力。该模型可用于协助制定有效的治疗方案和优化资源分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd3/11914016/953dcfea9fac/scdxxbyxb-56-1-183-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验