Suppr超能文献

3D U-Net分割技术在自动和手动虚拟现实工作流程中改进了从3D MRI图像进行的根系重建。

3D U-Net Segmentation Improves Root System Reconstruction from 3D MRI Images in Automated and Manual Virtual Reality Work Flows.

作者信息

Selzner Tobias, Horn Jannis, Landl Magdalena, Pohlmeier Andreas, Helmrich Dirk, Huber Katrin, Vanderborght Jan, Vereecken Harry, Behnke Sven, Schnepf Andrea

机构信息

Forschungszentrum Juelich GmbH, Agrosphere (IBG-3), Juelich, Germany.

Autonomous Intelligence Systems Group, University of Bonn, Bonn, Germany.

出版信息

Plant Phenomics. 2023 Jul 28;5:0076. doi: 10.34133/plantphenomics.0076. eCollection 2023.

Abstract

Magnetic resonance imaging (MRI) is used to image root systems grown in opaque soil. However, reconstruction of root system architecture (RSA) from 3-dimensional (3D) MRI images is challenging. Low resolution and poor contrast-to-noise ratios (CNRs) hinder automated reconstruction. Hence, manual reconstruction is still widely used. Here, we evaluate a novel 2-step work flow for automated RSA reconstruction. In the first step, a 3D U-Net segments MRI images into root and soil in super-resolution. In the second step, an automated tracing algorithm reconstructs the root systems from the segmented images. We evaluated the merits of both steps for an MRI dataset of 8 lupine root systems, by comparing the automated reconstructions to manual reconstructions of unaltered and segmented MRI images derived with a novel virtual reality system. We found that the U-Net segmentation offers profound benefits in manual reconstruction: reconstruction speed was doubled (+97%) for images with low CNR and increased by 27% for images with high CNR. Reconstructed root lengths were increased by 20% and 3%, respectively. Therefore, we propose to use U-Net segmentation as a principal image preprocessing step in manual work flows. The root length derived by the tracing algorithm was lower than in both manual reconstruction methods, but segmentation allowed automated processing of otherwise not readily usable MRI images. Nonetheless, model-based functional root traits revealed similar hydraulic behavior of automated and manual reconstructions. Future studies will aim to establish a hybrid work flow that utilizes automated reconstructions as scaffolds that can be manually corrected.

摘要

磁共振成像(MRI)用于对生长在不透明土壤中的根系进行成像。然而,从三维(3D)MRI图像重建根系结构(RSA)具有挑战性。低分辨率和较差的对比度噪声比(CNR)阻碍了自动重建。因此,手动重建仍被广泛使用。在这里,我们评估了一种用于自动RSA重建的新颖的两步工作流程。第一步,一个3D U-Net将MRI图像超分辨率分割为根和土壤。第二步,一种自动追踪算法从分割后的图像中重建根系。我们通过将自动重建结果与使用新型虚拟现实系统获得的未改变和分割后的MRI图像的手动重建结果进行比较,评估了8个羽扇豆根系的MRI数据集这两个步骤的优点。我们发现U-Net分割在手动重建中具有显著优势:对于低CNR的图像,重建速度提高了一倍(+97%),对于高CNR的图像,重建速度提高了27%。重建的根长度分别增加了20%和3%。因此,我们建议在手动工作流程中使用U-Net分割作为主要的图像预处理步骤。追踪算法得出的根长度低于两种手动重建方法,但分割允许对原本难以使用的MRI图像进行自动处理。尽管如此,基于模型的功能根性状显示自动重建和手动重建具有相似的水力行为。未来的研究旨在建立一种混合工作流程,该流程将自动重建作为可以手动校正的支架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4119/10381537/6f744c47644a/plantphenomics.0076.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验