Suppr超能文献

用于口腔光学相干断层扫描图像分割与去噪的半监督辅助多任务学习

Semi-supervised assisted multi-task learning for oral optical coherence tomography image segmentation and denoising.

作者信息

Liao Jinpeng, Zhang Tianyu, Shepherd Simon, Macluskey Michaelina, Li Chunhui, Huang Zhihong

机构信息

School of Science and Engineering, University of Dundee, DD1 4HN, Scotland, UK.

Healthcare Engineering, School of Physics and Engineering Technology, University of York, UK.

出版信息

Biomed Opt Express. 2025 Feb 26;16(3):1197-1215. doi: 10.1364/BOE.545377. eCollection 2025 Mar 1.

Abstract

Optical coherence tomography (OCT) is promising to become an essential imaging tool for non-invasive oral mucosal tissue assessment, but it faces challenges like speckle noise and motion artifacts. In addition, it is difficult to distinguish different layers of oral mucosal tissues from gray level OCT images due to the similarity of optical properties between different layers. We introduce the Efficient Segmentation-Denoising Model (ESDM), a multi-task deep learning framework designed to enhance OCT imaging by reducing scan time from ∼8s to ∼2s and improving oral epithelium layer segmentation. ESDM integrates the local feature extraction capabilities of the convolution layer and the long-term information processing advantages of the transformer, achieving better denoising and segmentation performance compared to existing models. Our evaluation shows that ESDM outperforms state-of-the-art models with a PSNR of 26.272, SSIM of 0.737, mDice of 0.972, and mIoU of 0.948. Ablation studies confirm the effectiveness of our design, such as the feature fusion methods, which enhance performance with minimal model complexity increase. ESDM also presents high accuracy in quantifying oral epithelium thickness, achieving mean absolute errors as low as 5 µm compared to manual measurements. This research shows that ESDM can notably improve OCT imaging and reduce the cost of accurate oral epithermal segmentation, improving diagnostic capabilities in clinical settings.

摘要

光学相干断层扫描(OCT)有望成为用于无创口腔黏膜组织评估的重要成像工具,但它面临着散斑噪声和运动伪影等挑战。此外,由于不同层之间光学特性的相似性,很难从灰度OCT图像中区分口腔黏膜组织的不同层。我们引入了高效分割去噪模型(ESDM),这是一个多任务深度学习框架,旨在通过将扫描时间从约8秒减少到约2秒并改善口腔上皮层分割来增强OCT成像。ESDM整合了卷积层的局部特征提取能力和Transformer的长期信息处理优势,与现有模型相比,实现了更好的去噪和分割性能。我们的评估表明,ESDM的性能优于现有模型,其峰值信噪比(PSNR)为26.272,结构相似性指数(SSIM)为0.737,平均Dice系数(mDice)为0.972,平均交并比(mIoU)为0.948。消融研究证实了我们设计的有效性,例如特征融合方法,这些方法在最小化模型复杂度增加的情况下提高了性能。ESDM在量化口腔上皮厚度方面也具有很高的准确性,与手动测量相比,平均绝对误差低至5微米。这项研究表明,ESDM可以显著改善OCT成像并降低准确的口腔上皮分割成本,提高临床环境中的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3705/11919357/8f553c3d92cd/boe-16-3-1197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验