Suppr超能文献

利用深度学习进行口腔光学相干断层扫描中的三维上皮分割

Three-Dimension Epithelial Segmentation in Optical Coherence Tomography of the Oral Cavity Using Deep Learning.

作者信息

Hill Chloe, Malone Jeanie, Liu Kelly, Ng Samson Pak-Yan, MacAulay Calum, Poh Catherine, Lane Pierre

机构信息

Department of Integrative Oncology, British Columbia Cancer Research Institute, 675 W 10th Ave., Vancouver, BC V5Z 1L3, Canada.

School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.

出版信息

Cancers (Basel). 2024 Jun 5;16(11):2144. doi: 10.3390/cancers16112144.

Abstract

This paper aims to simplify the application of optical coherence tomography (OCT) for the examination of subsurface morphology in the oral cavity and reduce barriers towards the adoption of OCT as a biopsy guidance device. The aim of this work was to develop automated software tools for the simplified analysis of the large volume of data collected during OCT. Imaging and corresponding histopathology were acquired in-clinic using a wide-field endoscopic OCT system. An annotated dataset ( = 294 images) from 60 patients (34 male and 26 female) was assembled to train four unique neural networks. A deep learning pipeline was built using convolutional and modified u-net models to detect the imaging field of view (network 1), detect artifacts (network 2), identify the tissue surface (network 3), and identify the presence and location of the epithelial-stromal boundary (network 4). The area under the curve of the image and artifact detection networks was 1.00 and 0.94, respectively. The Dice similarity score for the surface and epithelial-stromal boundary segmentation networks was 0.98 and 0.83, respectively. Deep learning (DL) techniques can identify the location and variations in the epithelial surface and epithelial-stromal boundary in OCT images of the oral mucosa. Segmentation results can be synthesized into accessible en face maps to allow easier visualization of changes.

摘要

本文旨在简化光学相干断层扫描(OCT)在口腔表面下形态检查中的应用,并减少OCT作为活检引导设备应用的障碍。这项工作的目的是开发自动化软件工具,用于对OCT采集的大量数据进行简化分析。使用宽视野内镜OCT系统在临床环境中获取成像和相应的组织病理学图像。收集了来自60名患者(34名男性和26名女性)的注释数据集( = 294张图像),用于训练四个独特的神经网络。使用卷积模型和改进的U-Net模型构建了一个深度学习管道,以检测成像视野(网络1)、检测伪影(网络2)、识别组织表面(网络3)以及识别上皮-间质边界的存在和位置(网络4)。图像和伪影检测网络的曲线下面积分别为1.00和0.94。表面和上皮-间质边界分割网络的Dice相似性评分分别为0.98和0.83。深度学习(DL)技术可以识别口腔黏膜OCT图像中上皮表面和上皮-间质边界的位置及变化。分割结果可以合成到易于访问的正面地图中,以便更轻松地可视化变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/898f/11172075/8dd897eb0627/cancers-16-02144-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验