Wang Xiaopeng, Gong Di, Chen Yi, Zong Zheng, Li Meng, Fan Kun, Jia Lina, Cao Qiyuan, Liu Qiang, Yang Qiang
Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
China-Japan Friendship Hospital, Beijing 100029, China.
Biomed Opt Express. 2025 Feb 20;16(3):1104-1117. doi: 10.1364/BOE.542471. eCollection 2025 Mar 1.
This study proposes a multi-scale fundus image enhancement approach that combines CNN with Mamba, demonstrating clear superiority across multiple benchmarks. The model consistently achieves top performance on public datasets, with the lowest FID and KID scores, and the highest PSNR and SSIM values, particularly excelling at larger image resolutions. Notably, its performance improves as the image size increases, with several metrics reaching optimal values at 1024 × 1024 resolution. Scale generalizability further highlights the model's exceptional structural preservation capability. Additionally, its high VSD and IOU scores in segmentation tasks further validate its practical effectiveness, making it a valuable tool for enhancing fundus images and improving diagnostic accuracy.
本研究提出了一种将卷积神经网络(CNN)与曼巴(Mamba)相结合的多尺度眼底图像增强方法,在多个基准测试中显示出明显的优势。该模型在公共数据集上始终取得最佳性能,具有最低的FID和KID分数,以及最高的PSNR和SSIM值,在较大图像分辨率下表现尤为出色。值得注意的是,其性能随着图像尺寸的增加而提高,在1024×1024分辨率下,多个指标达到最优值。尺度通用性进一步突出了该模型卓越的结构保留能力。此外,它在分割任务中的高VSD和IOU分数进一步验证了其实用有效性,使其成为增强眼底图像和提高诊断准确性的有价值工具。