Park Se Hwan, Ayyaswamy Abhinand, Gjerde Jonathan, Andrews W Beck, Vishnugopi Bairav S, Drakopoulos Michael, Vo Nghia T, Zhong Zhong, Thornton Katsuyo, Mukherjee Partha P, Hatzell Kelsey B
Andlinger Center for Energy and the EnvironmentPrinceton University, Princeton, New Jersey 08540, United States.
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
ACS Energy Lett. 2025 Feb 22;10(3):1174-1182. doi: 10.1021/acsenergylett.5c00004. eCollection 2025 Mar 14.
Lithium-reservoir-free solid-state batteries can fail due to electrical shorting as a result of fracture and lithium metal filament formation. Mechanical stress at the solid electrolyte surface can induce fractures, which promote lithium filament growth. This stress arises from both electrochemical sources, due to lithium electrodeposition, and mechanical sources, such as external stack pressure. Solid electrolyte surface roughness and the applied stack pressure together affect stress development. This study combines electrochemical experiments, 3D synchrotron imaging, and mesoscale modeling to explore how stack pressure influences failure mechanisms in lithium free solid-state batteries. At low stack pressure, irregular lithium plating and the resulting high local current density drive failure. At higher stack pressure, uniform lithium plating is favored; however, notch-like features in the surface of the solid electrolyte experience high tensile stress, leading to fractures that cause premature short-circuiting.
无锂储备固态电池可能因断裂和锂金属细丝形成导致的电气短路而失效。固体电解质表面的机械应力会引发断裂,从而促进锂细丝的生长。这种应力既源于电化学源(由于锂的电沉积),也源于机械源(如外部堆叠压力)。固体电解质表面粗糙度和施加的堆叠压力共同影响应力的产生。本研究结合电化学实验、三维同步加速器成像和中尺度建模,以探究堆叠压力如何影响无锂固态电池的失效机制。在低堆叠压力下,不规则的锂镀层以及由此产生的高局部电流密度会导致电池失效。在较高的堆叠压力下,有利于形成均匀的锂镀层;然而,固体电解质表面的缺口状特征会承受高拉伸应力,导致裂缝,进而引发过早短路。