Suppr超能文献

探索大语言模型在心理健康领域的偏差:神经性厌食症和神经性贪食症病例 vignettes 中性别和性取向影响的比较问卷调查研究。

Exploring Biases of Large Language Models in the Field of Mental Health: Comparative Questionnaire Study of the Effect of Gender and Sexual Orientation in Anorexia Nervosa and Bulimia Nervosa Case Vignettes.

作者信息

Schnepper Rebekka, Roemmel Noa, Schaefert Rainer, Lambrecht-Walzinger Lena, Meinlschmidt Gunther

机构信息

Department of Psychosomatic Medicine, University Hospital and University of Basel, Hebelstr. 2, Basel, 4031, Switzerland, 41 613284633.

Department of Digital and Blended Psychosomatics and Psychotherapy, Psychosomatic Medicine, University Hospital and University of Basel, Basel, Switzerland.

出版信息

JMIR Ment Health. 2025 Mar 20;12:e57986. doi: 10.2196/57986.

Abstract

BACKGROUND

Large language models (LLMs) are increasingly used in mental health, showing promise in assessing disorders. However, concerns exist regarding their accuracy, reliability, and fairness. Societal biases and underrepresentation of certain populations may impact LLMs. Because LLMs are already used for clinical practice, including decision support, it is important to investigate potential biases to ensure a responsible use of LLMs. Anorexia nervosa (AN) and bulimia nervosa (BN) show a lifetime prevalence of 1%-2%, affecting more women than men. Among men, homosexual men face a higher risk of eating disorders (EDs) than heterosexual men. However, men are underrepresented in ED research, and studies on gender, sexual orientation, and their impact on AN and BN prevalence, symptoms, and treatment outcomes remain limited.

OBJECTIVES

We aimed to estimate the presence and size of bias related to gender and sexual orientation produced by a common LLM as well as a smaller LLM specifically trained for mental health analyses, exemplified in the context of ED symptomatology and health-related quality of life (HRQoL) of patients with AN or BN.

METHODS

We extracted 30 case vignettes (22 AN and 8 BN) from scientific papers. We adapted each vignette to create 4 versions, describing a female versus male patient living with their female versus male partner (2 × 2 design), yielding 120 vignettes. We then fed each vignette into ChatGPT-4 and to "MentaLLaMA" based on the Large Language Model Meta AI (LLaMA) architecture thrice with the instruction to evaluate them by providing responses to 2 psychometric instruments, the RAND-36 questionnaire assessing HRQoL and the eating disorder examination questionnaire. With the resulting LLM-generated scores, we calculated multilevel models with a random intercept for gender and sexual orientation (accounting for within-vignette variance), nested in vignettes (accounting for between-vignette variance).

RESULTS

In ChatGPT-4, the multilevel model with 360 observations indicated a significant association with gender for the RAND-36 mental composite summary (conditional means: 12.8 for male and 15.1 for female cases; 95% CI of the effect -6.15 to -0.35; P=.04) but neither with sexual orientation (P=.71) nor with an interaction effect (P=.37). We found no indications for main effects of gender (conditional means: 5.65 for male and 5.61 for female cases; 95% CI -0.10 to 0.14; P=.88), sexual orientation (conditional means: 5.63 for heterosexual and 5.62 for homosexual cases; 95% CI -0.14 to 0.09; P=.67), or for an interaction effect (P=.61, 95% CI -0.11 to 0.19) for the eating disorder examination questionnaire overall score (conditional means 5.59-5.65 95% CIs 5.45 to 5.7). MentaLLaMA did not yield reliable results.

CONCLUSIONS

LLM-generated mental HRQoL estimates for AN and BN case vignettes may be biased by gender, with male cases scoring lower despite no real-world evidence supporting this pattern. This highlights the risk of bias in generative artificial intelligence in the field of mental health. Understanding and mitigating biases related to gender and other factors, such as ethnicity, and socioeconomic status are crucial for responsible use in diagnostics and treatment recommendations.

摘要

背景

大语言模型(LLMs)在心理健康领域的应用越来越广泛,在评估疾病方面显示出前景。然而,人们对其准确性、可靠性和公正性存在担忧。社会偏见和某些人群代表性不足可能会影响大语言模型。由于大语言模型已用于临床实践,包括决策支持,因此调查潜在偏见以确保大语言模型的合理使用非常重要。神经性厌食症(AN)和神经性贪食症(BN)的终生患病率为1%-2%,女性患者多于男性。在男性中,同性恋男性比异性恋男性面临更高的饮食失调风险。然而,男性在饮食失调研究中的代表性不足,关于性别、性取向及其对AN和BN患病率、症状和治疗结果影响的研究仍然有限。

目的

我们旨在评估一个常见的大语言模型以及一个专门为心理健康分析训练的较小的大语言模型所产生的与性别和性取向相关的偏差的存在情况和大小,以AN或BN患者的饮食失调症状和健康相关生活质量(HRQoL)为例。

方法

我们从科学论文中提取了30个病例 vignettes(22个AN和8个BN)。我们对每个 vignette 进行改编,创建4个版本,描述与女性或男性伴侣生活在一起的女性或男性患者(2×2设计),从而得到120个 vignettes。然后,我们将每个 vignette 分三次输入ChatGPT-4和基于大语言模型Meta AI(LLaMA)架构的“MentaLLaMA”,并要求通过对2种心理测量工具提供回答来对其进行评估,这2种工具分别是评估HRQoL的RAND-36问卷和饮食失调检查问卷。利用大语言模型生成的分数,我们计算了具有性别和性取向随机截距的多层模型(考虑 vignette 内方差),嵌套在 vignettes 中(考虑 vignette 间方差)。

结果

在ChatGPT-4中,具有360个观察值的多层模型表明,RAND-36心理综合总结与性别存在显著关联(条件均值:男性病例为12.8,女性病例为15.1;效应的95%置信区间为-6.15至-0.35;P=0.04),但与性取向(P=0.71)或交互效应(P=0.37)均无关联。对于饮食失调检查问卷总分(条件均值5.59 - 5.65,95%置信区间5.45至5.7),我们未发现性别(条件均值:男性病例为5.65,女性病例为5.61;95%置信区间-0.10至0.14;P=0.88)、性取向(条件均值:异性恋病例为5.63,同性恋病例为5.62;95%置信区间-0.14至0.09;P=0.67)的主效应或交互效应(P=0.61,95%置信区间-0.11至0.19)的迹象。MentaLLaMA未产生可靠结果。

结论

大语言模型生成的AN和BN病例 vignettes 的心理HRQoL估计可能存在性别偏差,男性病例得分较低,尽管没有实际证据支持这种模式。这凸显了心理健康领域生成式人工智能中存在偏差的风险。理解和减轻与性别以及其他因素(如种族和社会经济地位)相关的偏差对于在诊断和治疗建议中的合理使用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c69/11949086/32110b6b1a1a/mental-v12-e57986-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验