临床营养中的大语言模型:其应用、能力、局限性及潜在未来前景概述

Large language models in clinical nutrition: an overview of its applications, capabilities, limitations, and potential future prospects.

作者信息

Belkhouribchia Jamal, Pen Joeri Jan

机构信息

Endocrinology Center Hasselt, Hasselt, Belgium.

Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.

出版信息

Front Nutr. 2025 Aug 7;12:1635682. doi: 10.3389/fnut.2025.1635682. eCollection 2025.

Abstract

The integration of large language models (LLMs) into clinical nutrition marks a transformative advancement, offering promising solutions for enhancing patient care, personalizing dietary recommendations, and supporting evidence-based clinical decision-making. Trained on extensive text corpora and powered by transformer-based architectures, LLMs demonstrate remarkable capabilities in natural language understanding and generation. This review provides an overview of their current and potential applications in clinical nutrition, focusing on key technologies including prompt engineering, fine-tuning, retrieval-augmented generation, and multimodal integration. These enhancements increase domain relevance, factual accuracy, and contextual responsiveness, enabling LLMs to deliver more reliable outputs in nutrition-related tasks. Recent studies have shown LLMs' utility in dietary planning, nutritional education, obesity management, and malnutrition risk assessment. Despite these advances, challenges remain. Limitations in reasoning, factual accuracy, and domain specificity, along with risks of bias and hallucination, underscore the need for rigorous validation and human oversight. Furthermore, ethical considerations, environmental costs, and infrastructural integration must be addressed before widespread adoption. Future directions include combining LLMs with predictive analytics, integrating them with electronic health records and wearables, and adapting them for multilingual, culturally sensitive dietary guidance. LLMs also hold potential as research and educational tools, assisting in literature synthesis and patient engagement. Their transformative promise depends on cross-disciplinary collaboration, responsible deployment, and clinician training. Ultimately, while LLMs are not a replacement for healthcare professionals, they offer powerful augmentation tools for delivering scalable, personalized, and data-driven nutritional care in an increasingly complex healthcare environment.

摘要

将大语言模型(LLMs)整合到临床营养领域标志着一项变革性的进展,为提升患者护理、个性化饮食建议以及支持基于证据的临床决策提供了有前景的解决方案。大语言模型基于大量文本语料库进行训练,并由基于Transformer的架构提供支持,在自然语言理解和生成方面展现出卓越的能力。本综述概述了它们在临床营养领域的当前及潜在应用,重点关注包括提示工程、微调、检索增强生成和多模态整合在内的关键技术。这些改进提高了领域相关性、事实准确性和上下文响应能力,使大语言模型能够在营养相关任务中提供更可靠的输出。最近的研究表明大语言模型在饮食规划、营养教育、肥胖管理和营养不良风险评估方面具有实用性。尽管取得了这些进展,但挑战依然存在。推理、事实准确性和领域特异性方面的局限性,以及偏差和幻觉风险,凸显了进行严格验证和人工监督的必要性。此外,在广泛采用之前,必须解决伦理考量、环境成本和基础设施整合等问题。未来的方向包括将大语言模型与预测分析相结合,将它们与电子健康记录和可穿戴设备集成,并使其适用于多语言、对文化敏感的饮食指导。大语言模型作为研究和教育工具也具有潜力,可协助进行文献综合和患者参与。它们的变革性前景取决于跨学科合作、负责任的部署和临床医生培训。最终,虽然大语言模型不能替代医疗保健专业人员,但它们为在日益复杂的医疗环境中提供可扩展、个性化和数据驱动的营养护理提供了强大的增强工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59f5/12367769/9c2e64d8c1c2/fnut-12-1635682-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索