Suppr超能文献

通过水文模拟和深度学习揭示半干旱地区的节水模式。

Uncovering water conservation patterns in semi-arid regions through hydrological simulation and deep learning.

作者信息

Zhang Rui, Zhao Qichao, Liu Mingyue, Miao Shuxuan, Xin Da

机构信息

School of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang, China.

Hebei Collaborative Innovation Center for Aerospace Remote Sensing Information Processing and Application, Langfang, China.

出版信息

PLoS One. 2025 Mar 20;20(3):e0319540. doi: 10.1371/journal.pone.0319540. eCollection 2025.

Abstract

Under the increasing pressure of global climate change, water conservation (WC) in semi-arid regions is experiencing unprecedented levels of stress. WC involves complex, nonlinear interactions among ecosystem components like vegetation, soil structure, and topography, complicating research. This study introduces a novel approach combining InVEST modeling, spatiotemporal transfer of Water Conservation Reserves (WCR), and deep learning to uncover regional WC patterns and driving mechanisms. The InVEST model evaluates Xiong'an New Area's WC characteristics from 2000 to 2020, showing a 74% average increase in WC depth with an inverted "V" spatial distribution. Spatiotemporal analysis identifies temporal changes, spatial patterns of WCR and land use, and key protection areas, revealing that the WCR in Xiong'an New Area primarily shifts from the lowest WCR areas to lower WCR areas. The potential enhancement areas of WCR are concentrated in the northern region. Deep learning quantifies data complexity, highlighting critical factors like land use, precipitation, and drought influencing WC. This detailed approach enables the development of personalized WC zones and strategies, offering new insights into managing complex spatial and temporal WC data.

摘要

在全球气候变化压力不断增加的情况下,半干旱地区的水资源保护正面临前所未有的压力。水资源保护涉及植被、土壤结构和地形等生态系统组成部分之间复杂的非线性相互作用,这使得研究变得复杂。本研究引入了一种新颖的方法,将InVEST模型、水资源保护储备(WCR)的时空转移和深度学习相结合,以揭示区域水资源保护模式和驱动机制。InVEST模型评估了雄安新区2000年至2020年的水资源保护特征,结果显示水资源保护深度平均增加了74%,呈倒“V”形空间分布。时空分析确定了时间变化、WCR和土地利用的空间模式以及关键保护区,结果表明雄安新区的WCR主要从最低WCR区域转移到较低WCR区域。WCR的潜在增强区域集中在北部地区。深度学习对数据复杂性进行了量化,突出了土地利用、降水和干旱等影响水资源保护的关键因素。这种详细的方法能够制定个性化的水资源保护区域和策略,为管理复杂的时空水资源保护数据提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fd/11925281/f5415ad0e2c5/pone.0319540.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验