Suppr超能文献

通过行为和声学建模对尴尬情绪进行多学科特征描述。

Multidisciplinary characterization of embarrassment through behavioral and acoustic modeling.

作者信息

Šipka Dajana, Vlasenko Bogdan, Stein Maria, Dierks Thomas, Magimai-Doss Mathew, Morishima Yosuke

机构信息

Department of Clinical Psychology and Psychotherapy, University of Bern, Bern, Switzerland.

Institute for Psychology Clinical Psychology and Psychotherapy Department, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland.

出版信息

Sci Rep. 2025 Mar 20;15(1):9643. doi: 10.1038/s41598-025-94051-9.

Abstract

Embarrassment is a social emotion that shares many characteristics with social anxiety (SA). Most people experience embarrassment in their daily lives, but it is quite overlooked in research. We characterized embarrassment through an interdisciplinary approach, introducing a behavioral paradigm and applying machine learning approaches, including acoustic analyses. 33 participants wrote about an embarrassing experience and then, without knowing it prior, had to read it out loud to the conductor. Embarrassment was then examined using two different approaches: Firstly, from a subjective view, with self-report measures from the participants. Secondly, from an objective, machine-learning approach, in which trained models tested the robustness of our embarrassment data set (i.e., prediction accuracy), and then described embarrassment in a dimensional (i.e., dimension: valence, arousal, dominance; VAD) and categorical (i.e., comparing embarrassment to other emotional states) way. The subjective rating of embarrassment was increased after participants read their stories out loud, and participants with higher SA scores experienced higher embarrassment than participants with lower SA scores. The state of embarrassment was predicted with 86.4% as the best of the unweighted average recall rates. While the simple VAD dimensional analyses did not differentiate between the state of embarrassment and the references, the complex emotional category analyses characterized embarrassment as closer to boredom, a neutral state, and less of sadness. Combining an effective behavioral paradigm and advanced acoustic modeling, we characterized the emotional state of embarrassment, and the identified characteristics could be used as a biomarker to assess SA.

摘要

尴尬是一种与社交焦虑(SA)有许多共同特征的社会情绪。大多数人在日常生活中都会经历尴尬,但在研究中却常常被忽视。我们通过跨学科方法对尴尬进行了特征描述,引入了一种行为范式并应用了机器学习方法,包括声学分析。33名参与者写下一次尴尬经历,然后在事先不知情的情况下,必须向指挥大声朗读出来。然后使用两种不同的方法来研究尴尬:首先,从主观角度,采用参与者的自我报告测量方法。其次,从客观的机器学习方法角度,其中经过训练的模型测试我们尴尬数据集的稳健性(即预测准确性),然后以维度方式(即维度:效价、唤醒度、优势度;VAD)和类别方式(即将尴尬与其他情绪状态进行比较)来描述尴尬。参与者大声朗读他们的故事后,尴尬的主观评分有所提高,社交焦虑得分较高的参与者比得分较低的参与者经历了更高程度的尴尬。尴尬状态的预测准确率以未加权平均召回率中的最佳值86.4%实现。虽然简单的VAD维度分析无法区分尴尬状态与参考状态,但复杂的情绪类别分析将尴尬特征化为更接近无聊(一种中性状态),而与悲伤的程度较低。通过结合有效的行为范式和先进的声学建模,我们对尴尬的情绪状态进行了特征描述,并且所确定的特征可作为评估社交焦虑的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fcf/11926074/64c99d642ae6/41598_2025_94051_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验