Suppr超能文献

一种使用转录组数据和基于关键特征的基因集进行人类健康危害评估的工作流程。

A workflow for human health hazard evaluation using transcriptomic data and Key Characteristics-based gene sets.

作者信息

Tsai Han-Hsuan D, Oware King D, Wright Fred A, Chiu Weihsueh A, Rusyn Ivan

机构信息

Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States.

Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States.

出版信息

Toxicol Sci. 2025 Jun 1;205(2):310-325. doi: 10.1093/toxsci/kfaf036.

Abstract

Key characteristics (KCs) are properties of chemicals that are associated with different types of human health hazards. KCs are used for systematic reviews in support of hazard identification. Transcriptomic data are a rich source of mechanistic data and are frequently interpreted through "enriched" pathways/gene sets. Such analyses may be challenging to interpret in regulatory science because of redundancy among pathways, complex data analyses, and unclear relevance to hazard identification. We hypothesized that by cross-mapping pathways/gene sets and KCs, the interpretability of transcriptomic data can be improved. We summarized 72 published KCs across 7 hazard traits into 34 umbrella KC terms. Gene sets from Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG) were mapped to these, resulting in "KC gene sets." These sets exhibit minimal overlap and vary in the number of genes. Comparisons of the same KC gene sets mapped from Reactome and KEGG revealed low similarity, indicating complementarity. Performance of these KC gene sets was tested using publicly available transcriptomic datasets of chemicals with known organ-specific toxicity: benzene and 2,3,7,8-tetrachlorodibenzo-p-dioxin tested in mouse liver and drugs sunitinib and amoxicillin tested in human-induced pluripotent stem cell-derived cardiomyocytes. We found that KC terms related to the mechanisms affected by tested compounds were highly enriched, while the negative control (amoxicillin) showed limited enrichment with marginal significance. This study's impact is in presenting a computational approach based on KCs for the analysis of toxicogenomic data and facilitating transparent interpretation of these data in the process of chemical hazard identification.

摘要

关键特性(KCs)是与不同类型人类健康危害相关的化学物质属性。KCs用于支持危害识别的系统综述。转录组数据是机制数据的丰富来源,常通过“富集”的途径/基因集进行解读。由于途径之间的冗余、复杂的数据分析以及与危害识别的相关性不明确,此类分析在监管科学中可能难以解释。我们假设通过交叉映射途径/基因集和KCs,可以提高转录组数据的可解释性。我们将7个危害特征的72个已发表的KCs总结为34个总体KC术语。将来自Reactome和京都基因与基因组百科全书(KEGG)的基因集映射到这些术语上,得到“KC基因集”。这些集合显示出最小的重叠,并且基因数量各不相同。对从Reactome和KEGG映射的相同KC基因集进行比较,结果显示相似性较低,表明具有互补性。使用具有已知器官特异性毒性的化学物质的公开转录组数据集测试了这些KC基因集的性能:在小鼠肝脏中测试的苯和2,3,7,8-四氯二苯并对二恶英,以及在人诱导多能干细胞衍生的心肌细胞中测试的药物舒尼替尼和阿莫西林。我们发现,与受试化合物影响的机制相关的KC术语高度富集,而阴性对照(阿莫西林)显示出有限的富集且具有边际显著性。本研究的影响在于提出了一种基于KCs的计算方法,用于分析毒理基因组数据,并在化学危害识别过程中促进对这些数据的透明解读。

相似文献

2
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
3
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
4
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
6
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.

本文引用的文献

1
Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now!
J Toxicol Environ Health B Crit Rev. 2025 Jan 2;28(1):28-62. doi: 10.1080/10937404.2024.2412571. Epub 2024 Oct 10.
2
Toxicity by descent: A comparative approach for chemical hazard assessment.
Environ Adv. 2022 Oct 1;9:100287. doi: 10.1016/j.envadv.2022.100287.
5
Sunitinib induces cardiotoxicity through modulating oxidative stress and Nrf2-dependent ferroptosis in vitro and in vivo.
Chem Biol Interact. 2024 Jan 25;388:110829. doi: 10.1016/j.cbi.2023.110829. Epub 2023 Dec 13.
6
In-depth mechanistic analysis including high-throughput RNA sequencing in the prediction of functional and structural cardiotoxicants using hiPSC cardiomyocytes.
Expert Opin Drug Metab Toxicol. 2024 Jul;20(7):685-707. doi: 10.1080/17425255.2023.2273378. Epub 2023 Nov 23.
7
8
Air pollution impacts on in-hospital case-fatality rate of ischemic stroke patients.
Thromb Res. 2023 May;225:116-125. doi: 10.1016/j.thromres.2023.03.006. Epub 2023 Mar 22.
9
Multiomics Point of Departure (moPOD) Modeling Supports an Adverse Outcome Pathway Network for Ionizing Radiation.
Environ Sci Technol. 2023 Feb 28;57(8):3198-3205. doi: 10.1021/acs.est.2c04917. Epub 2023 Feb 17.
10
Consensus on the Key Characteristics of Immunotoxic Agents as a Basis for Hazard Identification.
Environ Health Perspect. 2022 Oct;130(10):105001. doi: 10.1289/EHP10800. Epub 2022 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验