Li Dan, Wu Xingyue, Qi Xinyu, Zhang Zeying, Zeng Lingjiang, Liu Xiaoqiang, Zhang Fangyuan, Lan Xiaozhong, Chen Min, Nagdy Mohammad Mahmoud, Liao Zhihua
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China.
TAAHC-SWU Medicinal Plant Joint R&D Centre, Key Laboratory of Tibetan Medicine Resources Conservation and Utilization of Tibet Autonomous Region, Xizang Agriculture and Animal Husbandry University, Nyingchi of Xizang, 860000, China.
Plant Cell Rep. 2025 Mar 21;44(4):79. doi: 10.1007/s00299-025-03471-4.
Heterologous synthesis of scutellarin was successfully achieved in Artemisia annua by supplementing missing enzymes and optimizing flavone 6 hydroxylase in the biosynthetic pathway after identifying two crucial precursors in wild type plants. Artemisia annua, a plant renowned for its antimalarial properties, harbors a diverse array of terpenoids, phenols and other natural products along with their respective precursors. Engineering A. annua plants through synthetic biology holds significant promise to produce drugs in scarcity. Herein, we identified two essential precursors of scutellarin, an ingredient known for its remarkable therapeutic efficacy in treating cerebrovascular and cardiovascular diseases, within wild-type A. annua plants. To facilitate the heterologous synthesis of this bioactive compound in A. annua, we co-expressed three key genes derived from the original host, Erigeron breviscapus: the flavone synthase II gene (EbFSII), the flavonoid-7-O-glucuronosyltransferase gene (EbF7GAT), and the flavone-6-hydroxylase gene (EbF6H). These engineered plants successfully synthesized scutellarin at levels ranging from 0.18 to 0.24 mg/g DW. Furthermore, the introduction of the flavone-6-hydroxylase gene from Scutellaria baicalensis (SbF6H), which demonstrated superior catalytic activity, significantly increased scutellarin generation, achieving concentrations of up to 0.64 mg/g DW. Notably, the insertion of these exogenous genes did not negatively affect the synthesis of artemisinin and its derivatives in A. annua. These findings suggest that A. annua offers a formidable foundation for the biosynthesis of scutellarin. Additionally, the results imply that enhancing the activity of critical enzymes boosts the yield of the valuable terminal products.
在野生型植物中鉴定出两种关键前体后,通过补充缺失的酶并优化生物合成途径中的黄酮6-羟化酶,在青蒿中成功实现了野黄芩苷的异源合成。青蒿是一种以抗疟疾特性而闻名的植物,含有多种萜类、酚类和其他天然产物及其各自的前体。通过合成生物学对青蒿植物进行工程改造,有望大量生产稀缺药物。在此,我们在野生型青蒿植物中鉴定出了野黄芩苷的两种必需前体,野黄芩苷是一种在治疗脑血管和心血管疾病方面具有显著治疗效果的成分。为了促进这种生物活性化合物在青蒿中的异源合成,我们共表达了来自原始宿主灯盏花的三个关键基因:黄酮合酶II基因(EbFSII)、黄酮-7-O-葡萄糖醛酸转移酶基因(EbF7GAT)和黄酮-6-羟化酶基因(EbF6H)。这些工程植物成功合成了含量在0.18至0.24毫克/克干重之间的野黄芩苷。此外,引入具有更高催化活性的黄芩黄酮-6-羟化酶基因(SbF6H),显著提高了野黄芩苷的产量,达到了高达0.64毫克/克干重的浓度。值得注意的是,这些外源基因的插入并没有对青蒿中青蒿素及其衍生物的合成产生负面影响。这些发现表明,青蒿为野黄芩苷的生物合成提供了一个强大的基础。此外,结果表明提高关键酶的活性可以提高有价值的终产物的产量。