Suppr超能文献

一种基于维度增加和二维卷积的无袖带血压估计方法。

A Cuffless Blood Pressure Estimation Method Using Dimensionality Increasing and Two-Dimensional Convolution.

作者信息

Cui Shouyi, Yang Guowei, Guan Jingxuan, He Yuheng, Zhou Xuefang, Bi Meihua, Shen Hanghai, Xu Yuansheng

出版信息

IEEE J Biomed Health Inform. 2025 Jul;29(7):4769-4783. doi: 10.1109/JBHI.2025.3551613.

Abstract

Blood pressure (BP) monitoring is a basic way to evaluate hypertension and its related diseases. Since non-invasive measurement with cuff is not real-time and invasive measurement with vessel puncture is not practical in daily life, this paper proposes a cuffless BP estimation method using two-dimensional (2D) convolution. Dimensionality increasing algorithms including recurrence plot and Gramian angular field are firstly used to convert electrocardiography (ECG) and photoplethysmography (PPG) signals into 2D images. New fused Gramian angular field (FGAF) and combined Gramian angular field (CGAF) are proposed to reduce the input 2D images data and enhance the signals' relevance. The converted images are used to train 2D convolutional models and estimate BP values. The 2D models effectively improved BP estimation accuracy, and the accuracy of the VGGNet 2D model using Gramian angular difference field (GADF) is improved by 38% compared with the corresponding 1D convolutional model. The proposed FGAF and CGAF can reduce input data by 50% while maintaining estimation accuracy, and the minimum mean absolute errors of the estimated BP values could reach 2.71 and 1.74 mmHg for systolic and diastolic blood pressures, respectively. To reduce model size, the VGGNet BP estimation model is pruned by reducing 60% of channel numbers while maintain the model performance. The pruned VGGNet model using the FGADF is then fine-tuned and validated by MIMIC-III dataset to show its generalization ability. Furthermore, a simple monitor system is built to show the feasibility of signal collection and BP estimation.

摘要

血压(BP)监测是评估高血压及其相关疾病的基本方法。由于使用袖带的无创测量不是实时的,而在日常生活中通过血管穿刺进行的有创测量又不实用,因此本文提出了一种使用二维(2D)卷积的无袖带血压估计方法。首先使用包括递归图和格拉姆角场在内的维度增加算法将心电图(ECG)和光电容积脉搏波描记法(PPG)信号转换为二维图像。提出了新的融合格拉姆角场(FGAF)和组合格拉姆角场(CGAF)以减少输入的二维图像数据并增强信号的相关性。转换后的图像用于训练二维卷积模型并估计血压值。二维模型有效地提高了血压估计精度,与相应的一维卷积模型相比,使用格拉姆角差场(GADF)的VGGNet二维模型的精度提高了38%。所提出的FGAF和CGAF可以在保持估计精度的同时将输入数据减少50%,估计血压值的最小平均绝对误差对于收缩压和舒张压分别可以达到2.71和1.74 mmHg。为了减小模型大小,通过减少60%的通道数对VGGNet血压估计模型进行剪枝,同时保持模型性能。然后使用FGADF的剪枝VGGNet模型通过MIMIC-III数据集进行微调并验证其泛化能力。此外,构建了一个简单的监测系统以展示信号采集和血压估计的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验