Hobeika Eva, Saab Joseph, Hallit Souheil, Morales Frias Isaac-Aaron, Jaffrezic-Renault Nicole, Errachid Abdelhamid
Department of Chemistry and Biochemistry, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon.
School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon.
BMC Chem. 2025 Mar 22;19(1):77. doi: 10.1186/s13065-025-01425-1.
The need for fast, efficient, and cost-effective test systems for antibiotics is surging, to control resistant bacterial strains. Electrochemical biosensors offer a good alternative to routine laboratory-bound analytical methods. These biosensors are portable, suitable for in-field analysis and biocompatible for detection of small biomolecules. The aim of this work is the ciprofloxacin active pharmaceutical ingredient since resistance of bacteria to this antibiotic is reportedly increasing worldwide, especially in Lebanon where hospitalization bills are no longer affordable. So, the target is ciprofloxacin detection, a fluoroquinolone antibiotic, on screen-printed electrodes. Following diazonium salt, also known as carboxymethylaniline (CMA) deposition, a ciprofloxacin oligonucleotide was incubated on the electrode. This aptamer acts as an anchor for the ciprofloxacin molecule, allowing the latter's attachment to the electrode and its quantification. Electrochemical characterization, through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) allowed for deposition of molecules on electrodes and confirmation that an electrochemical change took place. Scanning Electron Microscope images are used to confirm conformational changes on the surface of electrodes. Impedance results reported a limit of detection of LOD = 3 nM, a dynamic range from 10 nM to 100 µM, and reproducibility of results between two aptasensors to be 10%. Moreover, impedimetric sensor specificity evaluation was through the effect of interfering compounds tobramycin, ofloxacin, norfloxacin and ceftriaxone, on the aptasensor's response. Based on available literature, this LOD level reached allows for the detection of ciprofloxacin via a portable potentiostat in environmental (wastewater, food), biological (urine, saliva) and pharmaceutical samples (efficient market withdrawal of counterfeit medications from pharmaceutical storage facilities).
为了控制耐药菌株,对快速、高效且经济高效的抗生素检测系统的需求正在激增。电化学生物传感器为常规的实验室分析方法提供了一个很好的替代方案。这些生物传感器便于携带,适用于现场分析,并且对检测小生物分子具有生物相容性。这项工作的目标是检测环丙沙星活性药物成分,因为据报道细菌对这种抗生素的耐药性在全球范围内都在增加,尤其是在黎巴嫩,那里的住院费用已经让人难以承受。因此,目标是在丝网印刷电极上检测环丙沙星,一种氟喹诺酮类抗生素。在重氮盐(也称为羧甲基苯胺,CMA)沉积之后,将环丙沙星寡核苷酸在电极上孵育。这种适体充当环丙沙星分子的锚定物,使后者能够附着在电极上并进行定量。通过循环伏安法(CV)和电化学阻抗谱(EIS)进行电化学表征,以实现分子在电极上的沉积,并确认发生了电化学变化。扫描电子显微镜图像用于确认电极表面的构象变化。阻抗结果显示检测限为LOD = 3 nM,动态范围为10 nM至100 μM,两个适体传感器之间结果的重现性为10%。此外,通过干扰化合物妥布霉素、氧氟沙星、诺氟沙星和头孢曲松对适体传感器响应的影响来评估阻抗传感器的特异性。根据现有文献,达到的这种检测限水平使得能够通过便携式恒电位仪在环境(废水、食品)、生物(尿液、唾液)和药物样品(从药品储存设施中有效撤出假冒药品)中检测环丙沙星。