Suppr超能文献

用于人类细胞系和原代T细胞中可编程基因沉默的CRISPRoff表观基因组编辑。

CRISPRoff epigenome editing for programmable gene silencing in human cell lines and primary T cells.

作者信息

Pattali Rithu K, Ornelas Izaiah J, Nguyen Carolyn D, Xu Da, Divekar Nikita S, Nuñez NunezJames K

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States.

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, United States.

出版信息

Methods Enzymol. 2025;712:517-551. doi: 10.1016/bs.mie.2025.01.010. Epub 2025 Mar 6.

Abstract

The advent of CRISPR-based technologies has enabled the rapid advancement of programmable gene manipulation in cells, tissues, and whole organisms. An emerging platform for targeted gene perturbation is epigenetic editing, the direct editing of chemical modifications on DNA and histones that ultimately results in repression or activation of the targeted gene. In contrast to CRISPR nucleases, epigenetic editors modulate gene expression without inducing DNA breaks or altering the genomic sequence of host cells. Recently, we developed the CRISPRoff epigenetic editing technology that simultaneously establishes DNA methylation and repressive histone modifications at targeted gene promoters. Transient expression of CRISPRoff and the accompanying single guide RNAs in mammalian cells results in transcriptional repression of targeted genes that is memorized heritably by cells through cell division and differentiation. Here, we describe our protocol for the delivery of CRISPRoff through plasmid DNA transfection, as well as the delivery of CRISPRoff mRNA, into transformed human cell lines and primary immune cells. We also provide guidance on evaluating target gene silencing and highlight key considerations when utilizing CRISPRoff for gene perturbations. Our protocols are broadly applicable to other CRISPR-based epigenetic editing technologies, as programmable genome manipulation tools continue to evolve rapidly.

摘要

基于CRISPR的技术的出现,使得在细胞、组织和整个生物体中进行可编程基因操作得以迅速发展。一种新兴的靶向基因扰动平台是表观遗传编辑,即直接编辑DNA和组蛋白上的化学修饰,最终导致靶向基因的抑制或激活。与CRISPR核酸酶不同,表观遗传编辑器在不诱导DNA断裂或改变宿主细胞基因组序列的情况下调节基因表达。最近,我们开发了CRISPRoff表观遗传编辑技术,该技术可在靶向基因启动子处同时建立DNA甲基化和抑制性组蛋白修饰。在哺乳动物细胞中瞬时表达CRISPRoff和伴随的单向导RNA会导致靶向基因的转录抑制,细胞通过细胞分裂和分化可遗传地记住这种抑制。在这里,我们描述了通过质粒DNA转染以及将CRISPRoff mRNA导入转化的人类细胞系和原代免疫细胞中的方法。我们还提供了评估靶基因沉默的指导,并强调了利用CRISPRoff进行基因扰动时的关键注意事项。随着可编程基因组操作工具的迅速发展,我们的方法广泛适用于其他基于CRISPR的表观遗传编辑技术。

相似文献

4
Inheritable CRISPR based epigenetic modification in a fungus.真菌中的可遗传 CRISPR 基础表观遗传修饰。
Microbiol Res. 2023 Jul;272:127397. doi: 10.1016/j.micres.2023.127397. Epub 2023 Apr 29.

本文引用的文献

1
Epigenome editing technologies for discovery and medicine.表观基因组编辑技术的发现和医学应用。
Nat Biotechnol. 2024 Aug;42(8):1199-1217. doi: 10.1038/s41587-024-02320-1. Epub 2024 Jul 29.
5
CRISPR technologies for genome, epigenome and transcriptome editing.CRISPR 技术在基因组、表观基因组和转录组编辑中的应用。
Nat Rev Mol Cell Biol. 2024 Jun;25(6):464-487. doi: 10.1038/s41580-023-00697-6. Epub 2024 Feb 2.
8
Drug delivery systems for CRISPR-based genome editors.用于基于CRISPR的基因组编辑工具的药物递送系统。
Nat Rev Drug Discov. 2023 Nov;22(11):875-894. doi: 10.1038/s41573-023-00762-x. Epub 2023 Sep 18.
10
The p53 challenge of hematopoietic stem cell gene editing.造血干细胞基因编辑中的p53挑战
Mol Ther Methods Clin Dev. 2023 Jun 12;30:83-89. doi: 10.1016/j.omtm.2023.06.003. eCollection 2023 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验