Suppr超能文献

在未能拒绝原假设时处理常见的推理错误。

Addressing common inferential mistakes when failing to reject the null-hypothesis.

作者信息

Schmidt Amand

机构信息

Department of Cardiology, University of Amsterdam, Amsterdam Zuidoost, 22660, Netherlands Antilles.

University College London Faculty of Population Health Sciences, London, England, UK.

出版信息

F1000Res. 2025 Apr 1;13:1488. doi: 10.12688/f1000research.158434.3. eCollection 2024.

Abstract

Failure to reject a null-hypothesis may lead to erroneous conclusions regarding the absence of an association or inadequate statistical power. Because an estimate (and its variance) can never be exactly zero, traditional statistical tests cannot conclusively demonstrate the absence of an association. Instead, estimates of accuracy should be used to identify settings in which an association and its variability are sufficiently small to be clinically acceptable, directly providing information on safety and efficacy. Post-hoc power calculations should be avoided, as they offer no additional information beyond statistical tests and p-values. Furthermore, post-hoc power calculations can be misleading because of an inability to distinguish between results based on insufficient sample size and results that reflect clinically irrelevant differences. Most multiple testing procedures unrealistically assume that all positive results are false positives. However, in applied settings, results typically represent a mix of true and false positives. This implies that multiplicity corrections do not effectively differentiate between true and false positives. Instead, considering the distributions of p-values and the proportion of significant results can help to identify bodies of evidence unlikely to be driven by false-positive results. In conclusion, rather than attempting to categorize results as true or false, medical research should embrace established statistical methods that focus on estimation accuracy, replication, and consistency.

摘要

未能拒绝零假设可能会导致关于不存在关联或统计功效不足的错误结论。由于估计值(及其方差)永远不可能恰好为零,传统的统计检验无法确凿地证明不存在关联。相反,应该使用准确性估计来识别那些关联及其变异性足够小以至于在临床上可以接受的情况,直接提供有关安全性和有效性的信息。应避免事后功效计算,因为它们除了统计检验和p值之外不会提供额外信息。此外,事后功效计算可能会产生误导,因为无法区分基于样本量不足的结果和反映临床无关差异的结果。大多数多重检验程序不切实际地假设所有阳性结果都是假阳性。然而,在实际应用中,结果通常代表真阳性和假阳性的混合。这意味着多重性校正并不能有效地区分真阳性和假阳性。相反,考虑p值的分布和显著结果的比例有助于识别不太可能由假阳性结果驱动的证据主体。总之,医学研究不应试图将结果归类为真或假,而应采用侧重于估计准确性、重复性和一致性的既定统计方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验